首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci.An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1 × 10(-5)) ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92 × 10(-4)), whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65 × 10(-4)). Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women's Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05).Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63 × 10(-5)) is located within the 5'UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.  相似文献   

2.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios (affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with p = 0.001, p = 0.01 and p = 0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS.  相似文献   

3.
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with an important genetic component and strongest association driven by the HLA genes. We performed a pooling-based genome-wide association study of 500,000 SNPs in order to find new loci associated with the disease. After applying several criteria, 320 SNPs were selected from the microarrays and individually genotyped in a first and independent Spanish Caucasian replication cohort. The 8 most significant SNPs validated in this cohort were also genotyped in a second US Caucasian replication cohort for confirmation. The most significant association was obtained for SNP rs3129934, which neighbors the HLA-DRB/DQA loci and validates our pooling-based strategy. The second strongest association signal was found for SNP rs1327328, which resides in an unannotated region of chromosome 13 but is in linkage disequilibrium with nearby functional elements that may play important roles in disease susceptibility. This region of chromosome 13 has not been previously identified in MS linkage genome screens and represents a novel risk locus for the disease.  相似文献   

4.
Kim Y  Ryu J  Woo J  Kim JB  Kim CY  Lee C 《Animal genetics》2011,42(4):361-365
Genetic associations of nucleotide sequence variants with carcass traits in beef cattle were investigated using a genome-wide single nucleotide polymorphism (SNP) assay. Three hundred and thirteen Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,129 SNPs from 311 animals were analysed for each carcass phenotype after filtering by quality assurance. Five sequence markers were associated with one of the meat quantity or quality traits; rs109593638 on chromosome 3 with marbling score, rs109821175 on chromosome 11 and rs110862496 on chromosome 13 with backfat thickness (BFT), and rs110228023 on chromosome 6 and rs110201414 on chromosome 16 with eye muscle area (EMA) (P < 1.27 × 10(-6) , Bonferonni P < 0.05). The ss96319521 SNP, located within a gene with functions of muscle development, dishevelled homolog 1 (DVL1), would be a desirable candidate marker. Individuals with genotype CC at this gene appeared to have increased both EMA and carcass weight. Fine-mapping would be required to refine each of the five association signals shown in the current study for future application in marker-assisted selection for genetic improvement of beef quality and quantity.  相似文献   

5.
The Brazilian Amazon is a hypo-endemic malaria region with nearly 300,000 cases each year. A variety of genetic polymorphisms, particularly in erythrocyte receptors and immune response related genes, have been described to be associated with susceptibility and resistance to malaria. In order to identify polymorphisms that might be associated with malaria clinical outcomes in a Brazilian Amazonian population, sixty-four human single nucleotide polymorphisms in 37 genes were analyzed using a Sequenom massARRAY iPLEX platform. A total of 648 individuals from two malaria endemic areas were studied, including 535 malaria cases (113 individuals with clinical mild malaria, 122 individuals with asymptomatic infection and 300 individuals with history of previous mild malaria) and 113 health controls with no history of malaria. The data revealed significant associations (p<0.003) between one SNP in the IL10 gene (rs1800896) and one SNP in the TLR4 gene (rs4986790) with reduced risk for clinical malaria, one SNP in the IRF1 gene (rs2706384) with increased risk for clinical malaria, one SNP in the LTA gene (rs909253) with protection from clinical malaria and one SNP in the TNF gene (RS1800750) associated with susceptibility to clinical malaria. Also, a new association was found between a SNP in the CTL4 gene (rs2242665), located at the major histocompatibility complex III region, and reduced risk for clinical malaria. This study represents the first association study from an Amazonian population involving a large number of host genetic polymorphisms with susceptibility or resistance to Plasmodium infection and malaria outcomes. Further studies should include a larger number of individuals, refined parameters and a fine-scale map obtained through DNA sequencing to increase the knowledge of the Amazonian population genetic diversity.  相似文献   

6.
Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection.  相似文献   

7.
Summary The present study is the first to investigate gametic disequilibrium of loosely linked loci (recombination >22%) of known map distance in humans. The study population consisted of 302 healthy unrelated individuals of white mixed-European ancestry living in the Denver, Colorado area. Pairwise combinations of four loci on chromosome 1 (Rhesus, Duffy, phosphoglucomutase-1, and amylase-2) were examined for nonrandom association of alleles at different loci. Observed and expected values were compared with chi-square goodness-of-fit tests. There was no evidence of first-order interaction, i.e., gametic disequilibrium. From these findings it seems that gametic disequilibrium may not be important in the genetic organization of chromosome 1.  相似文献   

8.
The simulated dataset of the Genetic Analysis Workshop 14 provided affection status and the presence or absence of 12 traits. It was determined that all affected individuals must have traits E, F and H (EFH phenotype) and they must also have either trait B (B subtype) or traits C, D, and G (CDG subtype). A genome screen was performed, and linkage peaks were identified on chromosomes 1, 3, 5, and 9 using microsatellite markers. Dense panels of single-nucleotide polymorphism (SNP) markers were ordered for each of the four linkage peaks. In each case, association analyses identified a single SNP that accounted for the linkage evidence. The SNP on chromosome 1 appeared to primarily influence the B subtype, while the SNPs on chromosomes 5 and 9 primarily influenced the CDG subtype. The chromosome 3 SNP had the strongest effect and influenced both subtypes, as well as the requisite EFH phenotype. Recognizing the two subtypes prior to linkage analysis was key to identifying these loci using only a single replicate. This highlights the need in real life situations for careful examination of the phenotypic data prior to genetic analysis.  相似文献   

9.
The relevance of loci associated with blood lipids recently identified in European populations in individuals of African ancestry is unknown. We tested association between lipid traits and 36 previously described single-nucleotide polymorphisms (SNPs) in 1,466 individuals of African ancestry from Spanish Town, Jamaica. For the same allele and effect direction as observed in individuals of European ancestry, SNPs at three loci (1p13, 2p21, and 19p13) showed statistically significant association (p < 0.05) with LDL, two loci (11q12 and 20q13) showed association with HDL cholesterol, and two loci (11q12 and 2p24) showed association with triglycerides. The most significant association was between a SNP at 1p13 and LDL cholesterol (p = 4.6 × 10?8). This SNP is in a linkage disequilibrium region containing four genes (CELSR2, PSRC1, MYBPHL, and SORT1) and was recently shown to relate to risk for myocardial infarction. Overall, the results of this study suggest that much of the genetic variation which influences blood lipids is shared across ethnic groups.  相似文献   

10.
The EphB2 gene has been implicated as a tumor suppressor gene somatically altered in both prostate cancer (PC) and colorectal cancer. We have previously shown an association between an EphB2 germline nonsense variant and risk of familial prostate cancer among African American Men (AAM). Here we set out to test the hypothesis that common variation within the EphB2 locus is associated with increased risk of sporadic PC in AAM. We genotyped a set of 341 single nucleotide polymorphisms (SNPs) encompassing the EphB2 locus, including known and novel coding and noncoding variants, in 490 AA sporadic PC cases and 567 matched controls. Single marker-based logistical regression analyses revealed seven EphB2 SNPs showing statistically significant association with prostate cancer risk in our population. The most significant association was achieved for a novel synonymous coding SNP, TGen-624, (Odds Ratio (OR) =?0.22; 95% Confidence Interval (CI) 0.08-0.66, p?=?1×10(-5)). Two other SNPs also show significant associations toward a protective effect rs10465543 and rs12090415 (p?=?1×10(-4)), OR?=?0.49 and 0.7, respectively. Two additional SNPs revealed trends towards an increase in risk of prostate cancer, rs4612601 and rs4263970 (p?=?0.001), OR?=?1.35 and 1.31, respectively. Furthermore, haplotype analysis revealed low levels of linkage disequilibrium within the region, with two blocks being associated with prostate cancer risk among our population. These data suggest that genetic variation at the EphB2 locus may increase risk of sporadic PC among AAM.  相似文献   

11.
Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the laboratory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered blood levels of amino acids and acylcarnitines are also associated with common metabolic diseases in adults. Thus, the identification of common genetic determinants for blood metabolites might shed light on pathways contributing to human physiology and common diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios in a Central European cohort of 2,107 adults and performed genome-wide association (GWA) to identify genetic modifiers of metabolite concentrations. We discovered and replicated six novel loci associated with blood levels of total acylcarnitine, arginine (both on chromosome 6; rs12210538, rs17657775), propionylcarnitine (chromosome 10; rs12779637), 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700), stearoylcarnitine (chromosome 1; rs3811444), and aspartic acid traits (chromosome 8; rs750472). Based on an integrative analysis of expression quantitative trait loci in blood mononuclear cells and correlations between gene expressions and metabolite levels, we provide evidence for putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for 2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome 1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide additional functional evidence for ten loci that have previously been published for metabolites measured in plasma, serum or urine.In conclusion, our integrative analysis of SNP, gene-expression and metabolite data points to novel genetic factors that may be involved in the regulation of human metabolism. At several loci, we provide evidence for metabolite regulation via gene-expression and observed overlaps with GWAS loci for common diseases. These results form a strong rationale for subsequent functional and disease-related studies.  相似文献   

12.
Increased values of multiple adiposity-related anthropometric traits are important risk factors for many common complex diseases. We performed a genome-wide association (GWA) study for four quantitative traits related to body size and adiposity (BMI, weight, waist circumference, and height) in a cohort of 1,792 adult Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS). This is the first GWA study of anthropometric traits in Filipinos, a population experiencing a rapid transition into a more obesogenic environment. In addition to identifying suggestive evidence of additional single-nucleotide polymorphism (SNP) association signals (P < 10(-5)), we replicated (P < 0.05, same direction of additive effect) associations previously reported in European populations of both BMI and weight with MC4R and FTO, of BMI with BDNF, and of height with EFEMP1, ZBTB38, and NPPC, but none with waist circumference. We also replicated loci reported in Japanese or Korean populations as associated with BMI (OTOL1) and height (HIST1H1PS2, C14orf145, GPC5). A difference in local linkage disequilibrium (LD) between European and Asian populations suggests a narrowed association region for BDNF, while still including a proposed functional nonsynonymous amino acid substitution variant (rs6265, Val66Met). Finally, we observed significant evidence (P < 0.0042) for age-by-genotype interactions influencing BMI for rs17782313 (MC4R) and rs9939609 (FTO), and for a study year-by-genotype interaction for rs4923461 (BDNF). Our results show that several genetic risk factors are associated with anthropometric traits in Filipinos and provide further insight into the effects of BDNF, FTO, and MC4R on BMI.  相似文献   

13.

Background

Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas).

Results

We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002). The most significant results for CAD were EBF1, rs6865969, p = 0.007; PPP2R2B, rs7736604, p = 0.0003; SPOCK1, rs17170899, p = 0.004; and PRELID2, rs7713855, p = 0.003.

Conclusion

Using an intermediate disease-related quantitative trait of LDL-C we have identified four novel CAD genes, EBF1, PRELID2, SPOCK1, and PPP2R2B. These four genes should be further examined in future functional studies as candidate susceptibility loci for cardiovascular disease mediated through LDL-cholesterol pathways.  相似文献   

14.
The E-cadherin gene (CDH1) has been proposed as a prostate cancer (PC) susceptibility gene in several studies. Aberrant protein expression has been related to prognosis and progression in PC. In addition, a functional promoter SNP (rs16260) has been found to associate with PC risk. We performed a comprehensive genetic analysis of CDH1 by using the method of haplotype tagged SNPs in a large Swedish population-based case-control study consisting of 801 controls and 1,636 cases. In addition, Swedish PC families comprising a total of 157 cases sampled for DNA were analyzed for selected SNPs. Seven SNPs, including the promoter SNP rs16260, that captured over 96% of CDH1 haplotype variation were selected as haplotype tagging SNPs and analyzed for associated PC risk. We observed significant confirmation of rs16260 (P=0.003) for cases with a positive family history of PC (FH+) both in an independent case-control population and in PC families. In addition, a common haplotype (HapB, 25%) including the variant allele of rs16260 was associated (P=0.004) with PC risk among FH+ cases. The promoter SNP rs16260 as well as HapB were significantly transmitted to affected offspring in PC families. We report strong confirmation of the association between PC risk in FH+ cases and a functional CDH1 promoter SNP in an independent population. In conjunction with the biological importance of CDH1 our findings encourage further evaluation of genetic variation in CDH1 in relation to PC etiology. Due to the difficulties in replication of genetic association studies, this finding is unusual and novel.  相似文献   

15.
Genetic susceptibility to multiple sclerosis (MS) is associated with the MHC located on chromosome 6p21. This signal maps primarily to a 1-Mb region encompassing the HLA class II loci, and it segregates often with the HLA-DQB1*0602, -DQA1*0102, -DRB1*1501, -DRB5*0101 haplotype. However, the identification of the true predisposing gene or genes within the susceptibility haplotype has been handicapped by the strong linkage disequilibrium across the locus. African Americans have greater MHC haplotypic diversity and distinct patterns of linkage disequilibrium, which make this population particularly informative for fine mapping efforts. The purpose of this study was to establish the telomeric boundary of the HLA class II region affecting susceptibility to MS by assessing genetic association with the neighboring HLA-DRB5 gene as well as seven telomeric single nucleotide polymorphisms in a large, well-characterized African American dataset. Rare DRB5*null individuals were previously described in African populations. Although significant associations with both HLA-DRB1 and HLA-DRB5 loci were present, HLA-DRB1*1503 was associated with MS in the absence of HLA-DRB5, providing evidence for HLA-DRB1 as the primary susceptibility gene. Interestingly, the HLA-DRB5*null subjects appear to be at increased risk for developing secondary progressive MS. Thus, HLA-DRB5 attenuates MS severity, a finding consistent with HLA-DRB5's proposed role as a modifier in experimental autoimmune encephalomyelitis. Additionally, conditional haplotype analysis revealed a susceptibility signal at the class III AGER locus independent of DRB1. The data underscore the power of the African American MS dataset to identify disease genes by association in a region of high linkage disequilibrium.  相似文献   

16.
Dissecting the genetic basis of phenotypic variation in natural populations is a long‐standing goal in evolutionary biology. One open question is whether quantitative traits are determined only by large numbers of genes with small effects, or whether variation also exists in large‐effect loci. We conducted genomewide association analyses of forehead patch size (a sexually selected trait) on 81 whole‐genome‐resequenced male collared flycatchers with extreme phenotypes, and on 415 males sampled independent of patch size and genotyped with a 50K SNP chip. No SNPs were genomewide statistically significantly associated with patch size. Simulation‐based power analyses suggest that the power to detect large‐effect loci responsible for 10% of phenotypic variance was <0.5 in the genome resequencing analysis, and <0.1 in the SNP chip analysis. Reducing the recombination by two‐thirds relative to collared flycatchers modestly increased power. Tripling sample size increased power to >0.8 for resequencing of extreme phenotypes (N = 243), but power remained <0.2 for the 50K SNP chip analysis (N = 1245). At least 1 million SNPs were necessary to achieve power >0.8 when analysing 415 randomly sampled phenotypes. However, power of the 50K SNP chip to detect large‐effect loci was nearly 0.8 in simulations with a small effective population size of 1500. These results suggest that reliably detecting large‐effect trait loci in large natural populations will often require thousands of individuals and near complete sampling of the genome. Encouragingly, far fewer individuals and loci will often be sufficient to reliably detect large‐effect loci in small populations with widespread strong linkage disequilibrium.  相似文献   

17.
18.
Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls. Among the 116,161 single-nucleotide polymorphisms tested, an association with the known CD susceptibility gene NOD2, the 5q31 haplotype, and the recently reported CD locus at 5p13.1 was confirmed. In addition, SNP rs1793004 in the gene encoding nel-like 1 precursor (NELL1, chromosome 11p15.1) showed a consistent disease-association in independent German population- and family-based samples (942 cases, 1082 controls, 375 trios). Subsequent fine mapping and replication in an independent sample of 454 French/Canadian CD trios supported the authenticity of the NELL1 association. Further confirmation in a large German ulcerative colitis (UC) sample indicated that NELL1 is a ubiquitous IBD susceptibility locus (combined p<10(-6); OR = 1.66, 95% CI: 1.30-2.11). The novel 5p13.1 locus was also replicated in the French/Canadian sample and in an independent UK CD patient panel (453 cases, 521 controls, combined p<10(-6) for SNP rs1992660). Several associations were replicated in at least one independent sample, point to an involvement of ITGB6 (upstream), GRM8 (downstream), OR5V1 (downstream), PPP3R2 (downstream), NM_152575 (upstream) and HNF4G (intron).  相似文献   

19.
ABSTRACT: BACKGROUND: Recently, genomewide association studies identified a pleiotropic gene locus, ABO, as being significantly associated with hematological traits. To confirm the effects of ABO on hematological traits, we examined the link between the ABO locus and hematological traits in Korean population-based cohorts. RESULTS: Six tagging SNPs for ABO were analyzed with regard to their effects on hematological traits [white blood cell count (WBC), red blood cell count (RBC), platelet (Plat), mean corpuscular volume (MCV), and mean corpuscular haemoglobin concentration (MCHC)]. Linear regression analyses were performed, controlling for recruitment center, sex, and age as covariates. Of the 6 tagging SNPs, 3 (rs2073823, rs8176720, and rs495828) and 3 (rs2073823, rs8176717, and rs687289) were significantly associated with RBC and MCV, respectively (Bonferroni correction p-value criteria < 0.05/6 = 0.008). rs2073823 and a reported SNP (rs8176746), as well as rs495828 and a reported SNP (rs651007), showed perfect linkage disequilibrium status (r2s = 0.99). Of the remaining 3 SNPs (rs8176720, rs8176717 and rs687289), rs8176717 generated an independent signal with moderate p-value (= 0.045) when it was adjusted for by rs2073823 (the most significant SNP). We also identified a copy number variation (CNV) that was tagged by the SNP rs8176717, the minor allele of which correlated with the deletion allele of CNV. Our haplotype analysis indicated that the haplotype that contained the CNV deletion was significantly associated with MCV (beta +/- se = 0.363 +/- 0.118, p =2.09 x 10-3). CONCLUSIONS: Our findings confirm that ABO is one of the genetic factors that are associated with hematological traits in the Korean population. This result is notable, because GWASs fail to evaluate the link between a CNV and phenotype traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号