首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu  Xiaohong  Zhang  Haiyan  Chen  Dongjian  Song  Yan  Qian  Rong  Chen  Chen  Mao  Xingxing  Chen  Xinlei  Zhang  Weidong  Shao  Bai  Shen  Jianhong  Yan  Yaohua  Wu  Xinmin  Liu  Yonghua 《Neurochemical research》2015,40(9):1882-1891
Neurochemical Research - Traumatic brain injury (TBI) initiates a series of neurochemical and signaling changes that could eventually lead to neuronal apoptosis. Recent studies indicated that...  相似文献   

2.
Minichromosome maintenance complex component 3, one of the minichromosome maintenance proteins, functions as a part of pre-replication complex to initiate DNA replication in eukaryotes. Minichromosome maintenance complex component 3 (MCM3) was mainly implied in cell proliferation and tumorigenesis. In addition, MCM3 might play an important role in neuronal apoptosis. However, the functions of MCM3 in central nervous system are still with limited acquaintance. In this study, we performed a traumatic brain injury (TBI) model in adult rats. Western blot and immunohistochemistry staining showed up-regulation of MCM3 in the peritrauma brain cortex. The expression patterns of active caspase-3 and Bax, Bcl-2 were parallel with that of MCM3. Immunofluorescent staining and terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling suggested that MCM3 was involved in neuronal apoptosis. In conclusion, our data indicated that MCM3 might play an important role in neuronal apoptosis following TBI. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against TBI.  相似文献   

3.
4.
5.
We assessed the effects of low dose methamphetamine treatment of traumatic brain injury (TBI) in rats by employing MRI, immunohistology, and neurological functional tests. Young male Wistar rats were subjected to TBI using the controlled cortical impact model. The treated rats (n = 10) received an intravenous (iv) bolus dose of 0.42 mg/kg of methamphetamine at eight hours after the TBI followed by continuous iv infusion for 24 hrs. The control rats (n = 10) received the same volume of saline using the same protocol. MRI scans, including T2-weighted imaging (T2WI) and diffusion tensor imaging (DTI), were performed one day prior to TBI, and at 1 and 3 days post TBI, and then weekly for 6 weeks. The lesion volumes of TBI damaged cerebral tissue were demarcated by elevated values in T2 maps and were histologically identified by hematoxylin and eosin (H&E) staining. The fractional anisotropy (FA) values within regions-of-interest (ROI) were measured in FA maps deduced from DTI, and were directly compared with Bielschowsky’s silver and Luxol fast blue (BLFB) immunohistological staining. No therapeutic effect on lesion volumes was detected during 6 weeks after TBI. However, treatment significantly increased FA values in the recovery ROI compared with the control group at 5 and 6 weeks after TBI. Myelinated axons histologically measured using BLFB were significantly increased (p<0.001) in the treated group (25.84±1.41%) compared with the control group (17.05±2.95%). Significant correlations were detected between FA and BLFB measures in the recovery ROI (R = 0.54, p<0.02). Methamphetamine treatment significantly reduced modified neurological severity scores from 2 to 6 weeks (p<0.05) and foot-fault errors from 3 days to 6 weeks (p<0.05) after TBI. Thus, the FA data suggest that methamphetamine treatment improves white matter reorganization from 5 to 6 weeks after TBI in rats compared with saline treatment, which may contribute to the observed functional recovery.  相似文献   

6.
7.
A novel impulsive cell pressurization experiment has been developed using a Kolsky bar device to investigate blast-induced traumatic brain injury (TBI). We demonstrate in this video article how blast TBI-relevant impulsive pressurization is applied to the neuronal cells in vitro. This is achieved by using well-controlled pressure pulse created by a specialized Kolsky bar device, with complete pressure history within the cell pressurization chamber recorded. Pressurized neuronal cells are inspected immediately after pressurization, or further incubated to examine the long-term effects of impulsive pressurization on neurite/axonal outgrowth, neuronal gene expression, apoptosis, etc. We observed that impulsive pressurization at about 2 MPa induces distinct neurite loss relative to unpressurized cells. Our technique provides a novel method to investigate the molecular/cellular mechanisms of blast TBI, via impulsive pressurization of brain cells at well-controlled pressure magnitude and duration.  相似文献   

8.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组。用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P〈0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P〈0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P〈0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P〈0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

9.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组,用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

10.
In the experimental setting, taurine is known to be released from swollen cells to reestablish their normal volume. However, its clinical relevance has not been fully understood. This study was undertaken to reveal changes in cerebrospinal fluid (CSF) amino acids concentration in patients with severe traumatic brain injury (TBI). The study included eight patients, in whom a ventricular catheter was inserted to measure intracranial pressure and obtain CSF samples for 5 days. CSF obtained from patients with normal pressure hydrocephalus served as a control. CSF taurine concentration increased 1.8 times control (P < 0.05) after TBI and returned to control value approximately 67 h after injury. Taurine decreased further and remained lower than control thereafter. Phosphoethanolamine showed similar increase, whereas glutamine decreased transiently and arginine remained close to control value. The present data support the period of astrocytic swelling observed after TBI in other morphological studies. The mechanism and consequences of CSF taurine decrease in the subacute stage of TBI need to be elucidated.  相似文献   

11.
Hao  Jie  Chen  Xiaoqing  Fu  Ting  Liu  Jie  Yu  Mingchen  Han  Wei  He  Shuang  Qian  Rong  Zhang  Feng 《Neurochemical research》2016,41(9):2391-2400

The VHL (Von Hippel-Lindau) gene is a tumor suppressor gene, which is best known as an E3 ubiquitin ligase that negatively regulates the hypoxia inducible factor. The inactivation of VHL gene could result in the abnormal synthesis of VHL protein, which is in contact with the development and occurrence of renal clear cell carcinoma. However, the expression and possible function of VHL in central nervous system (CNS) is still unclear. To examine the function of VHL in CNS injury and repair, we used an acute spinal cord injury (SCI) model in adult rats. Western blot analysis showed an important upregulation of VHL protein, reaching a peak at day 3 and then declined during the following days. Double immunofluorescence staining showed that VHL was co-expressed with neurons, but not with astrocytes and microglia. Moreover, we detected that active caspase-3 had co-localized with VHL in neurons after SCI. Additionally in vitro, VHL depletion, by short interfering RNA, significantly reduced neuronal apoptosis. In conclusion, these data suggested that the change of VHL protein expression was related to neuronal apoptosis after SCI.

  相似文献   

12.

Background

Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons.

Methodology/Principal Findings

In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice.

Conclusion/Significance

ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.  相似文献   

13.
This study aimed to investigate the expression of the Nemo-like kinase (NLK) in the brain after experimental subarachnoid hemorrhage (SAH) in rats. A total of 90 rats were randomly divided into six groups: control group, day 1, day 3, day 5, day 7, and day 14. Day 1, day 3, day 5, day 7, and day 14 groups were all SAH groups in which the rats were killed on days 1, 3, 5, 7, and 14, respectively. In SAH groups, autologous arterial blood was injected into cisterna magna once on day 0. Cross-sectional area of basilar artery was measured by H&E staining. Immunostaining and immunoblotting experiments were performed to detect the expression of NLK protein. Real-time polymerase chain reaction was used to analyze the presence and quantity of NLK mRNA. The level of oxidative stress in the artery was also measured. The basilar arteries exhibited vasospasm after SAH and became the most severe on day 3. The expressions of NLK protein and mRNA were decreased remarkably in SAH groups compared with the control group. The down-regulated expression of NLK was detected after SAH and the low ebb was on day 3, which was oppositely the peak time of oxidative stress. The expression of NLK was present mainly in the neurons in the brain and smooth muscle cells in the basilar artery. NLK is decreasingly expressed in an opposite time-course to the development of cerebral vasospasm (CVS) and SAH-induced brain injury in this rat experimental model of SAH and these findings might have important implications during the administration of specific NLK agonist to prevent or reduce CVS or neuronal apoptosis caused by SAH.  相似文献   

14.
Podoplanin (PDPN) is a mucin-type transmembrane sialoglycoprotein expressed in multiple tissues in adult animals, including the brain, lungs, kidney, and lymphoid organs. Studies of this molecule have demonstrated its great importance in tumor metastasis, platelet aggregation, and lymphatic vessel formation. However, information regarding its regulation and possible function in the central nervous system is still limited. In this study, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats and detected increased expression of PDPN in the brain cortex. Immunofluorescence indicated that PDPN was located in the neurons, but not astrocytes. Moreover, there was a concomitant up-regulation of active caspase-3, cyclin D1, and CDK4 in vivo and vitro studies. In addition, the expression of these three proteins in cortical primary neurons was decreased after knocking down PDPN by siRNA. Collectively, all these results suggested that the up-regulation of PDPN might be involved in neuronal apoptosis in neuroinflammation after LPS injection.  相似文献   

15.
Traumatic brain injury (TBI) results in neuronal apoptosis, autophagic cell death and necroptosis. Necroptosis is a newly discovered caspases-independent programmed necrosis pathway which can be triggered by activation of death receptor. Previous works identified that necrostatin-1 (NEC-1), a specific necroptosis inhibitor, could reduce tissue damage and functional impairment through inhibiting of necroptosis process following TBI. However, the role of NEC-1 on apoptosis and autophagy after TBI is still not very clear. In this study, the amount of TBI-induced neural cell deaths were counted by PI labeling method as previously described. The expression of autophagic pathway associated proteins (Beclin-1, LC3-II, and P62) and apoptotic pathway associated proteins (Bcl-2 and caspase-3) were also respectively assessed by immunoblotting. The data showed that mice pretreated with NEC-1 reduced the amount of PI-positive cells from 12 to 48?h after TBI. Immunoblotting results showed that NEC-1 suppressed TBI-induced Beclin-1 and LC3-II activation which maintained p62 at high level. NEC-1 pretreatment also reversed TBI-induced Bcl-2 expression and caspase-3 activation, as well as the ratio of Beclin-1/Bcl-2. Both 3-MA and NEC-1 suppressed TBI-induced caspase-3 activation and LC3-II formation, Z-VAD only inhibited caspase-3 activation but increased LC3-II expression at 24?h post-TBI. All these results revealed that multiple cell death pathways participated in the development of TBI, and NEC-1 inhibited apoptosis and autophagy simultaneously. These coactions may further explain how can NEC-1 reduce TBI-induced tissue damage and functional deficits and reflect the interrelationship among necrosis, apoptosis and autophagy.  相似文献   

16.
We performed this study to determine whether in head injured patients body temperature rhythmicity exists outside the usual spectrum. Temperature data of in total 22 patients with head injury were analyzed using the Regressive and Iterative Cosinor methods. We found that circadian rhythm often remained, and usually was combined with rhythms in ultradian or infradian ranges. Tau shifts over consecutive days were observed in three severely head injured patients (Glasgow Coma Scale score ≤ 8). To validate the results we used surrogate data. Detection of temperature rhythms in this study may serve to estimate the clinical importance of biological rhythms in head injury.  相似文献   

17.
We performed this study to determine whether in head injured patients body temperature rhythmicity exists outside the usual spectrum. Temperature data of in total 22 patients with head injury were analyzed using the Regressive and Iterative Cosinor methods. We found that circadian rhythm often remained, and usually was combined with rhythms in ultradian or infradian ranges. Tau shifts over consecutive days were observed in three severely head injured patients (Glasgow Coma Scale score ≤ 8). To validate the results we used surrogate data. Detection of temperature rhythms in this study may serve to estimate the clinical importance of biological rhythms in head injury.  相似文献   

18.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.  相似文献   

19.
3-mercaptopyruvate sulfurtransferase (3-MST) was a novel hydrogen sulfide (H2S)-synthesizing enzyme that may be involved in cyanide degradation and in thiosulfate biosynthesis. Over recent years, considerable attention has been focused on the biochemistry and molecular biology of H2S-synthesizing enzyme. In contrast, there have been few concerted attempts to investigate the changes in the expression of the H2S-synthesizing enzymes with disease states. To investigate the changes of 3-MST after traumatic brain injury (TBI) and its possible role, mice TBI model was established by controlled cortical impact system, and the expression and cellular localization of 3-MST after TBI was investigated in the present study. Western blot analysis revealed that 3-MST was present in normal mice brain cortex. It gradually increased, reached a peak on the first day after TBI, and then reached a valley on the third day. Importantly, 3-MST was colocalized with neuron. In addition, Western blot detection showed that the first day post injury was also the autophagic peak indicated by the elevated expression of LC3. Importantly, immunohistochemistry analysis revealed that injury-induced expression of 3-MST was partly colabeled by LC3. However, there was no colocalization of 3-MST with propidium iodide (cell death marker) and LC3 positive cells were partly colocalized with propidium iodide. These data suggested that 3-MST was mainly located in living neurons and may be implicated in the autophagy of neuron and involved in the pathophysiology of brain after TBI.  相似文献   

20.
摘要 目的:探索紫檀芪(PTE)对小鼠缺血性脑损伤后脑水肿期神经细胞凋亡的影响。方法:将实验小鼠分为3组即假手术组(sham组)、脑缺血再灌注损伤组(IR组)和紫檀芪治疗组(PTE+IR组),其中PTE于造模前连续5天每天腹腔给药(5 mg/kg)1次;然后于造模后3 d进行脑组织TTC染色并计算脑梗死体积比;于造模后2 h、12 h和1、2、4、6、8、10、12及14 d进行小鼠神经行为学评分;使用TUNEL试剂盒于造模后3、7和14 d检测缺血半暗带和海马的凋亡神经细胞。结果:PTE可减轻脑梗死体积、改善神经行为学评分以及抑制缺血半暗带和海马的神经细胞凋亡。结论:PTE在小鼠缺血性脑损伤后脑水肿期具有明确的神经保护作用,其机制与抑制细胞凋亡有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号