首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cideb, a member of CIDE family proteins, has emerged as an important regulator in the development of obesity and diabetes by controlling fatty acid synthesis and VLDL secretion in hepatocytes. Here, we investigated the role of Cideb in cholesterol biosynthesis, uptake and storage in the liver by using Cideb-null mice as a model system. Cideb-null mice and wild-type mice were treated with normal diet (ND) or high cholesterol diet (HCD) for one month. The metabolic parameters of cholesterol metabolism and expression profiles of genes in cholesterol biosynthesis and storage were measured. Cideb-null mice had lower levels of plasma cholesterol and LDL when fed with both ND and HCD and increased rate of cholesterol absorption. Furthermore, the liver of Cideb-null mice has lower rates of cholesterol biosynthesis and reduced expression levels of sterol response element-binding protein (SREBP) cleavage-activation protein (SCAP), and lower levels of nuclear form of SREBP2 and its downstream target genes in cholesterol biosynthesis pathway under a normal diet treatment. On the contrary, hepatic cholesterol biosynthesis rate between wild-type and Cideb-null mice was similar after high cholesterol diet treatment. Interestingly, hepatic cholesterol storage in the liver of Cideb-null mice was significantly increased due to its increased LDL receptor (LDLR) and acyl-CoA cholesterol acyltransferase (ACAT) expression. Finally, we observed drastically reduced cholesterol levels in the heart of Cideb-null mice fed with a high cholesterol diet. Overall, our data suggest that Cideb is a novel regulator in controlling cholesterol homeostasis in the liver. Therefore, Cideb could serve as an important therapeutical target for the treatment of atherosclerosis and cardiovascular diseases.  相似文献   

3.
(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the 6-pyruvoyltetrahydropterin synthase gene, the encoded protein of which catalyzes the second step of BH4 biosynthesis. Homozygous mice were born at the almost expected Mendelian ratio, but died within 48 h after birth. In the brain of homozygous mutant neonates, levels of biopterin, catecholamines, and serotonin were extremely low. The number of TH molecules was highly dependent on the intracellular concentration of BH4 at nerve terminals. Alteration of the TH protein level by modulation of the BH4 content is a novel regulatory mechanism. Our data showing that catecholaminergic, serotonergic, and NO systems were differently affected by BH4 starvation suggest the possible involvement of BH4 synthesis in the etiology of monoamine-based neurological and neuropsychiatric disorders.  相似文献   

4.
Tyrosine hydroxylase (TH) is a rate‐limiting enzyme for dopamine synthesis and requires tetrahydrobiopterin (BH4) as an essential cofactor. BH4 deficiency leads to the loss of TH protein in the brain, although the underlying mechanism is poorly understood. To give insight into the role of BH4 in the developmental regulation of TH protein level, in this study, we investigated the effects of acute and subchronic administrations of BH4 or dopa on the TH protein content in BH4‐deficient mice lacking sepiapterin reductase. We found that BH4 administration persistently elevated the BH4 and dopamine levels in the brain and fully restored the loss of TH protein caused by the BH4 deficiency in infants. On the other hand, dopa administration less persistently increased the dopamine content and only partially but significantly restored the TH protein level in infant BH4‐deficient mice. We also found that the effects of BH4 or dopa administration on the TH protein content were attenuated in young adulthood. Our data demonstrate that BH4 and catecholamines are required for the post‐natal augmentation of TH protein in the brain, and suggest that BH4 availability in early post‐natal period is critical for the developmental regulation of TH protein level.  相似文献   

5.
Tetrahydrobiopterin (BH(4)) is an essential cofactor for several enzymes, including all three forms of nitric oxide synthases, the three aromatic hydroxylases, and glyceryl-ether mono-oxygenase. A proper level of BH(4) is, therefore, necessary for the metabolism of phenylalanine and the production of nitric oxide, catecholamines, and serotonin. BH(4) deficiency has been shown to be closely associated with diverse neurological psychiatric disorders. Sepiapterin reductase (SPR) is an enzyme that catalyzes the final step of BH(4) biosynthesis. Whereas the number of cases of neuropsychological disorders resulting from deficiencies of other catalytic enzymes involved in BH(4) biosynthesis and metabolism has been increasing, only a handful of cases of SPR deficiency have been reported, and the role of SPR in BH(4) biosynthesis in vivo has been poorly understood. Here, we report that mice deficient in the Spr gene (Spr(-/-)) display disturbed pterin profiles and greatly diminished levels of dopamine, norepinephrine, and serotonin, indicating that SPR is essential for homeostasis of BH(4) and for the normal functions of BH(4)-dependent enzymes. The Spr(-/-) mice exhibit phenylketonuria, dwarfism, and impaired body movement. Oral supplementation of BH(4) and neurotransmitter precursors completely rescued dwarfism and phenylalanine metabolism. The biochemical and behavioral characteristics of Spr(-/-) mice share striking similarities with the symptoms observed in SPR-deficient patients. This Spr mutant strain of mice will be an invaluable resource to elucidate many important issues regarding SPR and BH(4) deficiencies.  相似文献   

6.
Postnatal development of dopaminergic system is closely related to the development of psychomotor function. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of dopamine and requires tetrahydrobiopterin (BH4) as a cofactor. To clarify the effect of partial BH4 deficiency on postnatal development of the dopaminergic system, we examined two lines of mutant mice lacking a BH4-biosynthesizing enzyme, including sepiapterin reductase knock-out (Spr(-/-)) mice and genetically rescued 6-pyruvoyltetrahydropterin synthase knock-out (DPS-Pts(-/-)) mice. We found that biopterin contents in the brains of these knock-out mice were moderately decreased from postnatal day 0 (P0) and remained constant up to P21. In contrast, the effects of BH4 deficiency on dopamine and TH protein levels were more manifested during the postnatal development. Both of dopamine and TH protein levels were greatly increased from P0 to P21 in wild-type mice but not in those mutant mice. Serotonin levels in those mutant mice were also severely suppressed after P7. Moreover, striatal TH immunoreactivity in Spr(-/-) mice showed a drop in the late developmental stage, when those mice exhibited hind-limb clasping behavior, a type of motor dysfunction. Our results demonstrate a critical role of biopterin in the augmentation of TH protein in the postnatal period. The developmental manifestation of psychomotor symptoms in BH4 deficiency might be attributable at least partially to high dependence of dopaminergic development on BH4 availability.  相似文献   

7.
Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.  相似文献   

8.
Glutathione peroxidase 4 (Gpx4) is an essential antioxidant enzyme having multiple functions. A long form Gpx4 protein and a short form Gpx4 protein, which are distinguishable by the presence or lack of a mitochondrial signal peptide at the N terminus, are generated from the Gpx4 gene. In this study, we generated transgenic mice using mutated GPX4 genes encoding either the long form Gpx4 (lGPX4 gene) or the short form Gpx4 (sGPX4 gene). Our results showed that transgenic mice with the sGPX4 gene had increased Gpx4 protein in all tissues and were protected against diquat-induced apoptosis in liver. Moreover, the sGPX4 gene was able to rescue the lethal phenotype of the mouse Gpx4-null mutation. In contrast, transgenic mice with the lGPX4 gene had increased Gpx4 protein only in the testes, and the lGPX4 gene failed to rescue the lethal phenotype of the mouse Gpx4-null mutation. In Gpx4-null mice rescued by the sGPX4 gene, the Gpx4 protein was present in mitochondria isolated from somatic tissues, and the submitochondrial distribution pattern of the Gpx4 protein in these mice was identical to that in wild-type mice. Interestingly, the male Gpx4-null mice rescued by the sGPX4 gene were infertile and exhibited sperm malformation. Together, our results demonstrated for the first time that the short form Gpx4 protein is present in somatic tissue mitochondria and is essential for survival and protection against apoptosis in mice, whereas the long form Gpx4 protein is important for male fertility.  相似文献   

9.
Mutations in PTEN-induced kinase 1 (PINK1) gene cause recessive familial type 6 of Parkinson's disease (PARK6). PINK1 is believed to exert neuroprotective effect on SN dopaminergic cells by acting as a mitochondrial Ser/Thr protein kinase. Autosomal recessive inheritance indicates the involvement of loss of PINK1 function in PARK6 pathogenesis. In the present study, confocal imaging of cultured SN dopaminergic neurons prepared from PINK1 knockout mice was performed to investigate physiological importance of PINK1 in maintaining mitochondrial membrane potential (ΔΨm) and mitochondrial morphology and test the hypothesis that PARK6 mutations cause the loss of PINK1 function. PINK1-deficient SN dopaminergic neurons exhibited a depolarized ΔΨm. In contrast to long thread-like mitochondria of wild-type neurons, fragmented mitochondria were observed from PINK1-null SN dopaminergic cells. Basal level of mitochondrial superoxide and oxidative stressor H2O2-induced ROS generation were significantly increased in PINK1-deficient dopaminergic neurons. Overexpression of wild-type PINK1 restored hyperpolarized ΔΨm and thread-like mitochondrial morphology and inhibited ROS formation in PINK1-null dopaminergic cells. PARK6 mutant (G309D), (E417G) or (CΔ145) PINK1 failed to rescue mitochondrial dysfunction and inhibit oxidative stress in PINK1-deficient dopaminergic neurons. Mitochondrial toxin rotenone-induced cell death of dopaminergic neurons was augmented in PINK1-null SN neuronal culture. These results indicate that PINK1 is required for maintaining normal ΔΨm and mitochondrial morphology of cultured SN dopaminergic neurons and exerts its neuroprotective effect by inhibiting ROS formation. Our study also provides the evidence that PARK6 mutant (G309D), (E417G) or (CΔ145) PINK1 is defective in regulating mitochondrial functions and attenuating ROS production of SN dopaminergic cells.  相似文献   

10.
PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.  相似文献   

11.
This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.  相似文献   

12.
13.
Previous studies suggested that loss of tetrahydrobiopterin (BH(4)) may play an important role in the pathogenesis of vascular endothelial dysfunction induced by diabetes and hypertension. In contrast, controversial results have been reported regarding BH(4) metabolism in experimental models of atherosclerosis. Therefore, the present study was designed to characterize the expression and activity of GTP-cyclohydrolase I, a rate-limiting enzyme in biosynthesis of BH(4), during atherogenesis. BH(4) levels were significantly increased in atherosclerotic aortas of apolipoprotein E (apoE)-deficient mice as compared with wild-type mice after 5 mo of Western diet treatment. This increase was further significantly enhanced in apoE-deficient mice fed for 9 and 14 mo. Removal of the endothelium almost eliminated BH(4) in wild-type mice but not in apoE-deficient mice, suggesting that a major component of increased BH(4) synthesis is localized in the vascular media of apoE-deficient mice. Oxidative products of BH(4) were low and did not differ between wild-type and apoE-deficient mice over the course of this study. Increased protein expression and enzymatic activity of GTP-cyclohydrolase I were detected in aortas of apoE-deficient mice (P < 0.05), providing molecular mechanisms responsible for elevation of vascular BH(4). In contrast to aortas, we did not detect any change in levels of BH(4) and in GTP-cyclohydrolase I expression in the brain. Our results demonstrate selective increase of intracellular BH(4) levels via elevation of GTP-cyclohydrolase I activity in vascular tissue of apoE-deficient mice.  相似文献   

14.
Rett syndrome is a neurodevelopmental disorder caused by Mecp2 gene mutations. In RTT patients and Mecp2-null (Mecp2−/Y) mice, norepinephrine (NE) content drops significantly, which may play a role in breathing arrhythmia, sleep disorders and sudden death. However, the underlying mechanisms for the NE defect are not fully understood. The NE defect may result from decreased NE biosynthesis, loss of catecholaminergic neurons or both. Although deficiency in tyrosine hydroxylase (TH) has been demonstrated, it is possible that dopamine β-hydroxylase (DBH), the critical enzyme converting dopamine to NE, is also affected. To test these possibilities, we studied DBH expressions in pontine catecholaminergic neurons of Mecp2−/Y mice identified with breathing abnormalities. In comparison to the wild type, Mecp2−/Y mice at 2 months of age showed ∼50% decrease in the expressions of DBH and TH, at both protein and mRNA levels in the locus coeruleus (LC) region. Consistently, DBH and TH immunoreactivity was markedly decreased in LC neurons of Mecp2−/Y mice. No evidence was found for selective deficiency in TH- or DBH-containing neurons in Mecp2−/Y mice, as almost all TH-positive cells expressed DBH. By counting TH-immunoreactive cells in the LC, we found that the Mecp2−/Y mice lost only ∼5% of the catecholaminergic neurons as compared to wild-type, although their LC volume shrank by ∼15%. These results strongly suggest that the NE defect in Mecp2−/Y mice is likely to result from deficient expression of not only TH but also DBH without significant loss of catecholaminergic neurons in the LC.  相似文献   

15.
16.
Albino (al) is a lethal mutant of Bombyx mori that exhibits a colourless cuticle after the first ecdysis and dies without feeding on mulberry. Previous studies have indicated that sclerotisation was insufficient because of defective phenylalanine and tyrosine metabolism in albino larvae. However, the genetic mechanism underlying the albino phenotype has not been determined. Dopamine plays a central role in insect cuticle colouration and sclerotisation. The pathway for dopamine biosynthesis from phenylalanine involves phenylalanine hydroxylase (PAH; EC 1.14.16.1) and tyrosine hydroxylase (TH; EC 1.14.16.2). Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases, including PAH and TH. Thus, BH4 is indispensable for cuticle colouration and sclerotisation. Here we report on identifying mutations in the gene that encodes for the Bombyx homolog of 6-pyruvoyl-tetrahydropterin synthase (PTS) which is involved in the biosynthesis of BH4, in 2 strains with different al alleles. In strain a60 (al), a transposable element was inserted in exon 2 of BmPTS. In strain a61 (al2), an 11-bp deletion was identified in the exon 2 region of BmPTS. After oral administration of BH4 to the al2 larvae, the survival rate was effectively increased and the larval integument was pigmented. These results indicated that BmPTS was responsible for the albino mutants of B. mori. We conclude that (i) a mutation in BmPTS leads to an insufficient supply of BH4 and results in defective dopamine biosynthesis and (ii) lack of dopamine results in cuticle colouration and sclerotisation failure. Lemon (lem) is a BH4-deficient mutant. It has been reported that de novo synthesis of zygotic BH4 was indispensable for viability of the embryo in eggs laid by lem (lem/leml) females. We found that lem/lem, al2/al2 larvae produced by lem (lem/lem) females were viable during the first instar stage, suggesting that al2/al2 embryo could synthesis BH4 by using maternally transmitted BmPTS.  相似文献   

17.
Crad3 (cis-retinol/androgen dehydrogenase 3), a short-chain dehydrogenase/reductase, converts 9-cis-retinol into 9-cis-retinal and 3α-androstanediol into dihydrotestosterone. Crad3 may serve in biosynthesis of 9-cis-retinoic acid, a putative RXR ligand, and/or regeneration of potent androgens. RT-PCR showed that expression of the gene that encodes Crad3, rdh9, begins in liver by e11.5, and in kidney, testis, brain and intestine during e15.5–e16.5. In situ hybridization showed rdh9 expression in embryonic liver, ganglia, small intestine, lung, skin and vertebral cartilage. In adult, in situ hybridization revealed rdh9 expression intensely in hepatocytes, weakly in kidney glomerulus, and intensely in collecting tubules. In intestine, undifferentiated epithelia had greater expression than differentiated epithelia at the distal villus end. Testes expressed rdh9 in spermatogonia, and weakly in Leydig cells. Adult brain expressed rdh9 in the dentate gyrus and CA regions of the hippocampus, the cerebellum Purkinje cells, and the glomerular and mitral cell layers of the olfactory bulb. Rdh9-null mice, backcrossed against C57BL/6J mice, were born in Mendelian frequency, were healthy and fertile, and had normal tissue retinoid and serum dihydrotestosterone levels. Expression of rdh1, a gene that encodes an efficient retinol dehydrogenase, decreased 3- to 8-fold in rdh9-null mice, depending on dietary vitamin A. Microarray analysis and quantitative PCR revealed 2- to 4-fold increases in mRNA of enzymes that catalyze xenobiotic and steroid metabolism, including Cyp2, Cyp3, 11β-hydroxysteroid dehydrogenase type 2, and 17β-hydroxsteroid dehydrogenases types 4 and 5. These data indicate widespread Crad3 function(s) in steroid and/or retinoid metabolism starting mid embryogenesis.  相似文献   

18.
The newly described F-BAR (Fer/CIP4 and Bin, amphiphysin, Rvs) family of proteins includes Cdc42-interacting protein-4 (CIP4), formin-binding protein-17 (FBP-17) and transactivator of cytoskeletal assembly-1 (Toca-1), and drives membrane deformation and invagination. Membrane remodeling affects endocytosis, vesicle budding, and cargo selection. The F-BAR family presents a novel family of proteins, which little is known about their in vivo function. We investigated the physiological role of CIP4, by creating Cip4-null mice through homologous recombination. Compared with their wild-type littermates, the Cip4-null mice displayed lower early post-prandial glucose levels. Adipocytes isolated from Cip4-null mice exhibited increased [14C]2-deoxyglucose uptake compared with cells from wild-type mice. The enhanced insulin sensitivity was not due to higher levels of insulin or phospho-Akt, a critical player in insulin signaling. However, higher glucose transporter 4 (GLUT4) levels were detected in muscle membrane fractions in Cip4-null mice under insulin stimulation. Mouse embryonic fibroblasts from Cip4-null mice demonstrated decreased transferrin uptake, fluorescein isothiocyanate-dextran, and horseradish peroxidase uptake, indicating that CIP4 affects multiple modes of endocytosis. These studies demonstrate a physiological role for CIP4 in endocytosis leading to a whole animal phenotype.  相似文献   

19.
Ornithine decarboxylase (ODC) is the sentinel enzyme in polyamine biosynthesis. Both ODC and polyamines regulate cell division, proliferation, and apoptosis. Sepiapterin reductase (SPR) catalyzes the last step in the biosynthesis of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase, and has been implicated in neurological diseases but not yet in cancer. In this study, we present compelling evidence that native ODC and SPR physically interact, and we defined the individual amino acid residues involved in both enzymes using in silico protein–protein docking simulations. The resulting heterocomplex is a surprisingly compact structure, featuring two energetically and structurally equivalent binding modes both in monomer and in dimer conformations. The novel interaction between ODC and SPR proteins was confirmed under physiological conditions by co-immunoprecipitation and co-localization in neuroblastoma (NB) cells. Importantly, we showed that siRNA (small interfering RNA)-mediated knockdown of SPR expression significantly reduced endogenous ODC enzyme activity in NB cells, thus demonstrating the biological relevance of the ODC–SPR interaction. Finally, in a cohort of 88 human NB tumors, we found that high SPR mRNA expression correlated significantly with poor survival prognosis using a Kaplan–Meier analysis (log-rank test, P = 5 × 10− 4), suggesting an oncogenic role for SPR in NB tumorigenesis. In conclusion, we showed that ODC binds SPR and thus propose a new concept in which two well-characterized biochemical pathways converge via the interaction of two enzymes. We identified SPR as a novel regulator of ODC enzyme activity and, based on clinical evidence, present a model in which SPR drives ODC-mediated malignant progression in NB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号