共查询到20条相似文献,搜索用时 0 毫秒
1.
Lihong Fan Zefeng Yu Jia Li Xiaoqian Dang Kunzheng Wang 《Cellular and molecular neurobiology》2014,34(7):999-1010
This study evaluated whether bone marrow-derived mesenchymal stem cells (BM-MSCs) combined with xenogeneic acellular nerve grafts (xANGs) would reduce the inflammation reaction of xANGs transplantation. BM-MSCs were extracted, separated, purified, and cultured from the bone marrow of rats. Then BM-MSCs were seeded into 5 mm xANGs as experimental group, while xANGs group was chosen as control. Subcutaneous implantation and nerve grafts transplantation were done in this study. Walking-track tests, electrophysiological tests, H&E staining, and immunostaining of CD4, CD8, and CD68 of subcutaneous implantations, cytokine concentrations of IL-2, IL-10, IFN-γ and TNF-α in lymphocytes supernatants and serum of the two groups were evaluated. Walking-track tests and electrophysiological tests suggested the group of BM-MSCs with xANGs obtained better results than xANGs group (P < 0.05). H&E staining and immunostaining of CD4, CD8, and CD68 of subcutaneous implantations showed there were less inflammatory cells in the group of BM-MSCs when compared with the xANGs group. The cytokine concentrations of IL-2, IFN-γ, and TNF-α in BM-MSCs group were lower than xANGs group in lymphocytes supernatants and serum (P < 0.05). However, IL-10 concentrations in BM-MSCs group were higher than xANGs group (P < 0.05). xANG with BM-MSCs showed better nerve repair function when compared with xANG group. Furthermore, xANG with BM-MSCs showed less inflammatory reaction which might indicate the reason of its better nerve regeneration. 相似文献
2.
较大的腹壁缺损需要应用补片修复来缓解腹横筋膜的张力,人工合成补片的应用一定程度上实现了无张力修补的目的,但它在腹壁外科应用中有诸多的并发症,诸如复发率高,腹腔黏连,肠穿孔导致腹膜炎,侵袭性肠瘘等影响患者术后的正常生活,而脱细胞真皮基质(Acellular dermal matrix,ADM)作为一种新型的生物材料应用在腹壁外科中能解决上述人工合成补片所带来的并发症发挥强大作用且能与周围组织较好的融合,最后改建成宿主自身组织已并在多学科领域中广泛应用;骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)能参与组织自我修复,并能分化成为多种功能细胞,分泌各种生长因子,在ADM内源性转归过程中可发挥作用。本文就对骨髓间充质干细胞在ADM生物补片应用于临床疝修补术中转归机制的研究做一综述。 相似文献
3.
E. S. Petrova 《Russian Journal of Developmental Biology》2018,49(4):193-205
Mesenchymal stem cells (MSCs) are widely used in experimental research on cell therapy intended for the stimulation of repair processes in damaged tissues and organs. The present review summarizes the results of studies devoted to the possible directions of MSC differentiation after the transplantation of these cells into damaged nerves or special engineered structures of biological and artificial biodegradable materials that join the ends of a damaged nerve (nerve conduits). Data on exogenous MSC differentiation into Schwann cells, pericytes, smooth muscle cells, endotheliocytes, and other cell types are presented. Methods for preliminary MSC differentiation in vitro and examples of beneficial effects of these cells transplanted into damaged conductive nerves on nerve regeneration are given. The fate of exogenous MSCs placed into an unnatural biological niche remains poorly characterized and requires further studies, as emphasized in the review. 相似文献
4.
Lin Xu Shuai Zhou Guo-Ying Feng Lu-Ping Zhang Dong-Mei Zhao Yi Sun Qian Liu Fei Huang 《Molecular neurobiology》2012,46(2):265-274
With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5?×?105 NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair. 相似文献
5.
Transdifferentiated Mesenchymal Stem Cells as Alternative Therapy in Supporting Nerve Regeneration and Myelination 总被引:4,自引:0,他引:4
Keilhoff G Stang F Goihl A Wolf G Fansa H 《Cellular and molecular neurobiology》2006,26(7-8):1233-1250
1. Aims: Demyelination plays a crucial role in neurodegenerative processes and traumatic disorders. One possibility to achieve remyelination and subsequent restoration of neuronal function is to provide an exogenous source of myelinating cells via transplantation. In this context, mesenchymal stem cells (MSCs) have attracted interest. They are multipotent stem cells that differentiate into cells of the mesodermal lineage like bone, cartilage, fat, and muscle. Although adult, their differentiation potential is remarkable, and they are able to transdifferentiate.2. Methods: We transformed cultivated rat MSCs into myelinating cells by using a cytokine cocktail. Transdifferentiated MSCs were characterized by an enhanced expression of LNGF-receptor, Krox20, and CD104, and a decreased expression of BMP receptor-1A as compared to untreated MSCs. The myelinating capacity was evaluated in vitro and in vivo. Therefore, PC12 cells, normally unmyelinated, were cocultivated with MSCs, transdifferentiated MSCs, and Schwann cells, or the respective cells were grafted into an autologous muscle conduit bridging a 2-cm gap in the rat sciatic nerve. Myelination of PC12 cells was demonstrated by electron microscopy. In vivo, after 3 and 6 weeks regeneration including myelination was monitored histologically and morphometrically. Autologous nerves and cell-free muscle grafts were used as control.3. Results: Schwann cells and transdifferentiated MSCs were able to myelinate PC12 cells after 14 days in vitro. In vivo, autologous nerve grafts demonstrated the best results in all regenerative parameters. An appropriate myelination was noted in the Schwann cell groups and, albeit with restrictions, in the transdifferentiated MSC groups, while regeneration in the MSC groups and in the cell-free groups was impaired.4. Conclusion: Our findings demonstrate that it may be possible to differentiate MSCs into therapeutically useful cells for clinical applications in myelin defects. 相似文献
6.
Jiabin Liu Haiying Zhang Yun Zhang Nan Li Yuku Wen Fanglei Cao Hao Ai Xiaoou Xue 《Molecules and cells》2014,37(12):865-872
Premature ovarian failure (POF) is a long-term adverse effect of chemotherapy treatment. However, current available treatment regimens are not optimal. Emerging evidence suggests that bone marrow-derived mesenchymal stem cells (BMSCs) could restore the structure and function of injured tissues, but the homing and restorative effects of BMSCs on chemotherapy injured ovaries are still not clear. In this study, we found that granulosa cell (GC) apoptosis induced by cisplatin was reduced when BMSCs were migrated to granulosa cells (GCs) in vitro. Chemotherapy-induced POF was induced by intraperitoneal injection of cisplatin in rats. BMSCs labeled with enhanced green fluorescent protein (EGFP) were injected into the rats via the tail vein to investigate the homing and distribution of BMSCs in vivo. The number of BMSCs in the ovarian hilum and medulla was greater than in the cortex, but no BMSCs were found in the follicles and corpus lutea. In addition, the BMSCs treatment group’s antral follicle count and estradiol levels increased after 30 days, compared with the POF group. Hence, our study demonstrates that intravenously delivered BMSCs can home to the ovaries, and restore its structure and function in POF model rats. 相似文献
7.
本研究旨在探讨应用乙酰水杨酸(ASA)预处理的骨髓间充质干细胞(BMMSCs)治疗对大鼠牙周炎模型中的牙周骨修复的影响。通过建立大鼠牙周炎动物模型并使用ASA和BMMSCs联和治疗大鼠,本研究检测了体外BMMSCs的成骨分化、成脂分化、碱性磷酸酶(ALP)活性及成骨相关基因(ALP和OCN)的表达,并检测大鼠相关炎症因子(TNF-α,IL-17和IL-10)水平。结果显示,使用成骨培养基诱导BMMSCs后,可清晰地观察到BMMSCs的成骨分化和成脂分化。体外研究显示,60μg/mL的ASA显著促进了体外BMMSCs的增殖,提高了碱性磷酸酶(ALP)活性,促进了钙沉积和上调了成骨相关基因(ALP和OCN)的表达。此外,与未治疗的牙周炎大鼠比较,经ASA-BMMSCs治疗的牙周炎大鼠的TNF-α和IL-17水平显著下降,而IL-10显著升高。本研究表明,60μg/mL的ASA显著促进了体外BMMSCs的增殖和成骨分化。ASA和BMMSCs联用能够调节大鼠体内相关细胞因子的表达,并减轻炎症反应,可能是牙周炎治疗和牙周骨再生的有效方法。 相似文献
8.
目的:观察去甲肾上腺素(norepinephrine,NE)对骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)增殖的影响及其作用途径.方法:分离培养正常大鼠BMSCs,采用3H-TdR掺入实验检测不同浓度的NE(10-7-10-4 M)作用8h及10-5M的NE作用不同时间(0-24h)BMSCs细胞增殖情况,real time RT-PCR检测肾上腺素能受体α1A-AR,α1B-AR和α1D-AR mRNA表达变化情况.结果:10-7-10-4M的NE作用8h后均促进了BMSCs细胞的增殖.并且在10-5M时NE对BMSCs的促增殖效应最为显著;正常组BMSCs细胞的α1A-AR,α1B-AR,α1D-AR mRNA表达维持在较低水平,加入10-5M的NE作用后α1-AR三个亚型mRNA表达水平均有不同程度的升高(P<0.05).结论:NE能够促进BMSCs的增殖,并且这种促增殖作用是通过AR依赖的信号通路来调节的. 相似文献
9.
Eren ?erman Tolga Akko? Muhsin Eraslan ?zlem ?ahin Selvinaz ?zkara Fugen Vardar Aker Cansu Suba?? Erdal Kara?z Tun? Akko? 《PloS one》2016,11(6)
Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. 相似文献
10.
Louise Alessandra Mesentier-Louro Camila Zaverucha-do-Valle Almir Jord?o da Silva-Junior Gabriel Nascimento-dos-Santos Fernanda Gubert Ana Beatriz Padilha de Figueirêdo Ana Luiza Torres Bruno D. Paredes Camila Teixeira Fernanda Tovar-Moll Rosalia Mendez-Otero Marcelo F. Santiago 《PloS one》2014,9(10)
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime. 相似文献
11.
Mesenchymal stem cell (MSC) transplantation has proved to be a promising strategy in cell therapy and regenerative medicine. Although their mechanism of action is not completely clear, it has been suggested that their therapeutic activity may be mediated by a paracrine effect. The main goal of this study was to evaluate by radiographic, morphometric and histological analysis the ability of mesenchymal stem cells derived from human adipose tissue (Ad-MSC) and their conditioned medium (CM), to repair surgical bone lesions using an in vivo model (rabbit mandibles). The results demonstrated that both, Ad-MSC and CM, induce bone regeneration in surgically created lesions in rabbit''s jaws, suggesting that Ad-MSC improve the process of bone regeneration mainly by releasing paracrine factors. The evidence of the paracrine effect of MSC on bone regeneration has a major impact on regenerative medicine, and the use of their CM can address some issues and difficulties related to cell transplants. In particular, CM can be easily stored and transported, and is easier to handle by medical personnel during clinical procedures. 相似文献
12.
Xiaodan Qian Cui Zhang Guojun Chen Zihua Tang Quanwen Liu Jiarong Chen Xiangming Tong Jinfu Wang 《Cell biochemistry and biophysics》2014,70(2):1127-1136
Hindlimb unloading, as a simulation of microgravity, decreases the osteogenic potential of mesenchymal stem cells (MSCs) from hindlimb femur of rat. We simulated the microgravity by 28-day of hindlimb unloading for male Sprague–Dawley rat, and performed intramuscular injection of BMP-2 and FGF2 at a given interval during hindlimb unloading. Then, the bone marrow (BM) was collected from hindlimb femur of rat. MSCs were isolated from BM, cultured for four passages, and then induced for osteogenesis. The results revealed that the hindlimb unloading decreased the osteogenic potential of MSCs and also the expression of osteoblast gene marker mRNAs in cells induced by osteogenic conditions. Hindlimb unloading for 28 days resulted in the decrease of vinculin-containing focal adhesion in MSCs. During hindlimb unloading, the interval intramuscular injection of BMP-2 or FGF2 alone could increase the osteogenic potential of MSCs and the expression of osteoblast gene marker mRNA. However, the effect of BMP-2 or FGF2 injection alone was significantly lower than that of combination injection of both factors. The further examination showed that the intramuscular injection of BMP-2 promoted the expression of Runx2 mRNA and that the intramuscular injection of FGF2 increased the phosphorylation of ERK and Runx2. Nevertheless, the intramuscular injection of any factor could not increase the formation of vinculin-containing focal adhesions in MSCs. This suggests that BMP-2 should increase the expression of Runx2, and that the activation of Runx2 should be promoted by the FGF2 signaling pathway which activated ERK/Runx2. The activation of this signaling pathway should not lie on the formation of vinculin-containing focal adhesions. 相似文献
13.
Hung-Chuan Pan Chun-Shih Chin Dar-Yu Yang Shu-Peng Ho Chung-Jung Chen Shiaw-Min Hwang Ming-Hong Chang Fu-Chou Cheng 《Neurochemical research》2009,34(7):1304-1316
Purpose Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal
stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production
in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS
in a sciatic nerve injury model. Methods Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The
AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was
administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory
cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated
7 and 28 days after injury. Results Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve.
However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration
chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in
oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event
was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated,
and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. Conclusion AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in
implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration. 相似文献
14.
15.
Jinzhong Liu Chao Liu Bin Sun Ce Shi Chunyan Qiao Xiaoliang Ke Shutai Liu Xia Liu Hongchen Sun 《Cell biochemistry and biophysics》2014,68(3):479-487
Tissue engineering strategies often fail to regenerate bones because of inadequate vascularization, especially in the reconstruction of large segmental bone defects. Large volumes of vascular endothelial cells (ECs) that functionally interact with osteoblasts during osteogenesis are difficult to obtain. In this study, we simulated bone healing by co-culturing differentiated ECs and mesenchymal stem cells (MSCs) either on a culture plate or on a polylactide glycolic acid (PLGA) scaffold in vitro. We also evaluated the effect of osteogenesis in repairing rabbit mandible defects in vivo. In this study, MSCs were separated from rabbit as the seed cells. After passage, the MSCs were cultured in an EC-conditioned medium to differentiate into ECs. Immunohistochemical staining analysis with CD34 showed that the induced cells had the characteristics of ECs and MSC. The induced ECs were co-cultured in vitro, and the induction of MSCs to osteoblast served as the control. Alkaline phosphatase (ALP) and alizarin red (AZR) staining experiments were performed, and the Coomassie brilliant blue total protein and ALP activity were measured. The MSCs proliferated and differentiated into osteoblast-like cells through direct contact between the derived ECs and MSCs. The co-cultured cells were seeded on PLGA scaffold to repair 1 cm mandible defects in the rabbit. The effectiveness of the repairs was assessed through soft X-ray and histological analyses. The main findings indicated that MSCs survived well on the scaffold and that the scaffold is biocompatible and noncytotoxic. The results demonstrated that the co-cultured MSC-derived ECs improved MSC osteogenesis and promoted new bone formation. This study may serve as a basis for the use of in vitro co-culturing techniques as an improvisation to bone tissue engineering for the repair of large bone defects. 相似文献
16.
Mesenchymal Stem Cells from Rat Bone Marrow Downregulate Caspase-3-mediated Apoptotic Pathway After Spinal Cord Injury in Rats 总被引:6,自引:0,他引:6
Mesenchymal stem cells have been intensively studied for their potential use in reparative strategies for neurodegenerative
diseases and traumatic injuries. We used mesenchymal stem cells (rMSC) from rat bone marrow to evaluate the therapeutic potential
after spinal cord injury (SCI). Immunohistochemistry confirmed a large number of apoptotic neurons and oligodendrocytes in
caudal segments 2 mm away from the lesion site. Expression of caspase-3 on both neurons and oligodendrocytes after SCI was
significantly downregulated by rMSC. Caspase-3 downregulation by rMSC involves increased expression of FLIP and XIAP in the
cytosol and inhibition of PARP cleavage in the nucleus. Animals treated with rMSC had higher Basso, Beattie, Bresnahan (BBB)
locomotor scoring and better recovery of hind limb sensitivity. Treatment with rMSC had a positive effect on behavioral outcome
and histopathological assessment after SCI. The ability of rMSC to incorporate into the spinal cord, differentiate and to
improve locomotor recovery hold promise for a potential cure after SCI.
Special issue in honor of Naren Banik. 相似文献
17.
18.
骨髓间充质干细胞因具有容易获得、容易体外培养增殖、长期培养的过程中始终保持多向分化的潜能、抗原性小、组织修复能力强等特征,使之成为干细胞研究领域的热点和前沿,并被认为是最有前途的组织工程种子细胞之一。以干细胞工程为代表的现代组织工程学为组织器官的修复与替代提供了一个崭新的领域,并将此领域扩展到细胞替代治疗、支持造血、基因治疗等更多方面。 相似文献
19.
We evaluated the biological characteristics/effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rat tibia nonunion. SD rats (142) were randomly divided into four groups: fracture group (positive control); nonunion group (negative control); hUC-MSCs grafting with blood plasma group; and hUC-MSCs grafting with saline group. Rats were administered tetracycline (30 mg/kg) and calcein blue (5 mg/kg) 8 days before killing. The animals were killed under deep anesthesia at 4 and 8 weeks post fracture for radiological evaluation and histological/immunohistological studies. The hUC-MSCs grafting with blood plasma group was similar to fracture group: the fracture line blurred in 4 weeks and disappeared in 8 weeks postoperatively. Histological/immunohistological studies showed that hUC-MSCs were of low immunogenicity which merged in rat bone tissue, differentiated into osteogenic lineages, and completed the healing of nonunion. After stem cell transplantation, regardless of whether plasma or saline was used, new multi-center bone formation was observed; fracture site density was better in stem cell grafting with blood plasma group. We, therefore, concluded that the biological characteristics of hUC-MSCs-treated nonunion were different from the standard fracture healing process, and the proliferative and localization capacity of hUC-MSCs might benefit from the use of blood plasma. 相似文献
20.
虽然二甲双胍广泛用于治疗2型糖尿病,但是其对骨骼的潜在影响知之甚少。因此,本研究评估了二甲双胍对培养的大鼠骨髓间充质干细胞(MSCs)和脂肪细胞两者的分化以及增殖的影响。首先随机组形成对照实验,其中对照组为在不经二甲双胍处理培养基中培养MSCs细胞21 d,而二甲双胍组则在用100μmol/L二甲双胍处理培养基中培养MSCs 21 d。结果表明,二甲双胍增强了大鼠MSCs的成骨细胞分化细胞中ALP的活性,抑制了培养中MSCs脂肪形成分化的过程,但是增强了MSCs细胞的增殖能力。 相似文献