首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
H+-transporting, F1Fo-type ATP synthases utilize a transmembrane H+ potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating β subunits of the extramembranous F1 sector of the enzyme, synthesis being driven by rotation of the γ subunit in the center of the F1 molecule between the alternating catalytic sites . The H+ electrochemical potential is thought to drive γ subunit rotation by first coupling H+ transport to rotation of an oligomeric rotor of c subunits within the transmembrane Fo sector. The γ subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the γ and ε subunits of F1. In this essay we will review recent studies on the Escherichia coli Fo sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp61 centered in the second transmembrane helix (TMH). A model for the structural organization of the c10 oligomer in Fo was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H+-carrying carboxyl of subunit c is occluded between neighboring subunits of the c10 oligomer and that two c subunits pack in a “front-to-back” manner to form the H+ (cation) binding site. In order for protons to gain access to Asp61 during the protonation/deprotonation cycle, we propose that the outer, Asp61-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp61 protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp61. The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c10 oligomer during coupled synthesis of ATP.  相似文献   

2.
FoF1-ATP synthase catalyzes ATP hydrolysis/synthesis coupled with a transmembrane H+ translocation in membranes. The Fo c-subunit ring plays a major role in this reaction. We have developed an assignment strategy for solid-state 13C NMR (ssNMR) signals of the Fo c-subunit ring of thermophilic Bacillus PS3 (TFo c-ring, 72 residues), carrying one of the basic folds of membrane proteins. In a ssNMR spectrum of uniformly 13C-labeled sample, the signal overlap has been a major bottleneck because most amino acid residues are hydrophobic. To overcome signal overlapping, we developed a method designated as COmplementary Sequential assignment with MInimum Labeling Ensemble (COSMILE). According to this method, we generated three kinds of reverse-labeled samples to suppress signal overlapping. To assign the carbon signals sequentially, two-dimensional Cα(i+1)–C′Cα(i) correlation and dipolar assisted rotational resonance (DARR) experiments were performed under magic-angle sample spinning. On the basis of inter- and intra-residue 13C–13C chemical shift correlations, 97% of Cα, 97% of Cβ and 92% of C′ signals were assigned directly from the spectra. Secondary structure analysis predicted a hairpin fold of two helices with a central loop. The effects of saturated and unsaturated phosphatidylcholines on TFo c-ring structure were examined. The DARR spectra at 15 ms mixing time are essentially similar to each other in saturated and unsaturated lipid membranes, suggesting that TFo c-rings have similar structures under the different environments. The spectrum of the sample in saturated lipid membranes showed better resolution and structural stability in the gel state. The C-terminal helix was suggested to locate in the outer layer of the c-ring.  相似文献   

3.
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector.Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.  相似文献   

4.
The aim of the present study was to construct functional hybrid ATPases consisting of all Escherichia coli ATPase subunits excepts the F0 subunits a or c which were replaced by the respective subunits of the Propionigenium modestum ATPase. This would give valuable information on the subunit(s) conferring the coupling ion specificity. Plasmids were constructed that carried the gene for subunit c (uncE) or subunit a (uncB) behind a tac promoter. These plasmids were transformed into E. coli strains which differed with respect to the unc operon and the expression of the P. modestum genes was verified biochemically. Enhanced expression of the P. modestum genes led to strong growth inhibition of all E. coli strains tested. However, the expressed P. modestum proteins could not functionally complement E. coli strains that lacked the homologous subunit.Abbreviations PCR Polymerase chain reaction - ACMA 9-amino-6-chloro-2-methoxyacridine - SDS sodium dodecyl sulfate - DCCD N,N-dicyclohexylcarbodiimide - PMSF pnenylmethyl sulfornyl fluoride - DFP dirsopropylfluorphosphat - TCA trichloroacetic acid  相似文献   

5.
The insertion of inner membrane proteins in Escherichia coli occurs almost exclusively via the SecYEG pathway, while some membrane proteins require the membrane protein insertase YidC. In vitro analysis demonstrates that subunit a of the F1F0 ATP synthase (F0a) is strictly dependent on Ffh, SecYEG and YidC for its membrane insertion but independent of the proton motive force. The insertion of the first transmembrane segment of F0a also depends on Ffh and SecYEG but not on YidC, whereas the insertion is strongly dependent on the proton motive force, unlike the full-length F0a protein. These data demonstrate an extensive role of YidC in the assembly of the F0 sector of the F1F0 ATP synthase.  相似文献   

6.
A new assay has been developed to measure mitochondrial ATP synthesis of cultured mammalian cells. Cells in a microplate are exposed to streptolysin O to make plasma membranes permeable without damaging mitochondrial function and ATP synthesis is monitored by luciferase. Addition of inhibitors of FoF1-ATP synthase (FoF1), respiratory chain, TCA cycle and ATP/ADP translocator, as well as knockdown of β-subunit of FoF1, resulted in loss of ATP synthesis. Compared with the conventional procedures that need mitochondria fractionation and detergent, this assay is simple, sensitive and suitable for high-throughput analysis of genes and drugs that could affect mitochondrial functional integrity as represented by ATP synthesis activity.  相似文献   

7.
Proton-translocating ATP synthase (FoF1) synthesizes ATP from ADP and phosphate, coupled with an electrochemical proton gradient across the biological membrane. It has been established that the rotation of a subunit assembly is an essential feature of the enzyme mechanism and that FoF1 can be regarded as a molecular motor. Thus, experimentally, in the reverse direction (ATP hydrolysis), the chemical reaction drives the rotation of a c 10-14 subunit assembly followed by proton translocation. We discuss our very recent results regarding subunit rotation in Escherichia coli FoF1 with a combined biophysical and mutational approach.  相似文献   

8.
The subunit c-ring of H+-ATP synthase (Fo c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly [13C, 15N]-labeled Fo c from E. coli (EFo c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the 13C and 15N signals were assigned. The obtained chemical shifts suggested that EFo c takes on a hairpin-type helix-loop-helix structure in membranes as in an organic solution. The results on the magnetization transfer between the EFo c and deuterated lipids indicated that Ile55, Ala62, Gly69 and F76 were lined up on the outer surface of the oligomer. This is in good agreement with the cross-linking results previously reported by Fillingame and his colleagues. This agreement reveals that the reconstituted EFo c oligomer takes on a ring structure similar to the intact one in vivo. On the other hand, analysis of the 13C nuclei distance of [3-13C]Ala24 and [4-13C]Asp61 in the Fo c-ring did not agree with the model structures proposed for the EFo c-decamer and dodecamer. Interestingly, the carboxyl group of the essential Asp61 in the membrane-embedded EFo c-ring turned out to be protonated as COOH even at neutral pH. The hydrophobic surface of the EFo c-ring carries relatively short side chains in its central region, which may allow soft and smooth interactions with the hydrocarbon chains of lipids in the liquid-crystalline state.  相似文献   

9.
The rotation of F1Fo-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane Fo domain, which is coupled to the ATP-producing F1 domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the “locked” and “open” conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F1Fo-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.  相似文献   

10.
Synthesis of adenosine triphosphate ATP, the ‘biological energy currency’, is accomplished by FoF1‐ATP synthase. In the plasma membrane of Escherichia coli, proton‐driven rotation of a ring of 10 c subunits in the Fo motor powers catalysis in the F1 motor. Although F1 uses 120° stepping during ATP synthesis, models of Fo predict either an incremental rotation of c subunits in 36° steps or larger step sizes comprising several fast substeps. Using single‐molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36° sequential stepping mode of the c‐ring during ATP synthesis.  相似文献   

11.
The γ subunit located at the center of ATP synthase (FOF1) plays critical roles in catalysis. Escherichia coli mutant with Pro substitution of the γ subunit residue γLeu218, which are located the rotor shaft near the c subunit ring, decreased NADH-driven ATP synthesis activity and ATP hydrolysis-dependent H+ transport of membranes to ~60% and ~40% of the wild type, respectively, without affecting FOF1 assembly. Consistently, the mutant was defective in growth by oxidative phosphorylation, indicating that energy coupling is impaired by the mutation. The ε subunit conformations in the γLeu218Pro mutant enzyme were investigated by cross-linking between cysteine residues introduced into both the ε subunit (εCys118 and εCys134, in the second helix and the hook segment, respectively) and the γ subunit (γCys99 and γCys260, located in the globular domain and the carboxyl-terminal helix, respectively). In the presence of ADP, the two γ260 and ε134 cysteine residues formed a disulfide bond in both the γLeu218Pro mutant and the wild type, indicating that the hook segment of ε subunit penetrates into the α3β3-ring along with the γ subunits in both enzymes. However, γ260/ε134 cross-linking in the γLeu218Pro mutant decreased significantly in the presence of ATP, whereas this effect was small in the wild type. These results suggested that the γ subunit carboxyl-terminal helix containing γLeu218 is involved in the conformation of the ε subunit hook region during ATP hydrolysis and, therefore, is required for energy coupling in FOF1.  相似文献   

12.
FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings.  相似文献   

13.
The c subunit of Streptococcus mutans ATP synthase (FoF1) is functionally exchangeable with that of Escherichia coli, since E. coli with a hybrid FoF1 is able to grow on minimum succinate medium through oxidative phosphorylation. E. coli F1 bound to the hybrid Fo with the S. mutans c subunit showed N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity similar to that of E. coli FoF1. Thus, the S. mutans c subunit assembled into a functional Fo together with the E. coli a and b subunits, forming a normal F1 binding site. Although the H+ pathway should be functional, as was suggested by the growth on minimum succinate medium, ATP-driven H+ transport could not be detected with inverted membrane vesicles in vitro. This observation is partly explained by the presence of an acidic residue (Glu-20) in the first transmembrane helix of the S. mutans c subunit, since the site-directed mutant carrying Gln-20 partly recovered the ATP-driven H+ transport. Since S. mutans is recognized to be a primary etiological agent of human dental caries and is one cause of bacterial endocarditis, our system that expresses hybrid Fo with the S. mutans c subunit would be helpful to find antibiotics and chemicals specifically directed to S. mutans.  相似文献   

14.
FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings.  相似文献   

15.
The pH dependence of the reaction of dicyclohexylcarbodiimide with the essential aspartyl-61 residue in subunit c of Escherichia coli ATP synthase was compared in membranes and in a detergent dispersed preparation of the enzyme. The rate of reaction was estimated by measuring the inactivation of ATPase activity. The reaction with the detergent dispersed form of the enzyme proved to be pH sensitive with the essential aspartyl group titrating with a pKa=8. However, when measured with E. coli membranes, the reaction proved to be pH insensitive. The results suggest that the reacting aspartyl-61 residues are shielded from the bulk aqueous solvent when in the membrane, but then become aqueous-accessible following detergent solubilization.  相似文献   

16.
Cell-free (CF) expression technologies have emerged as promising methods for the production of individual membrane proteins of different types and origin. However, many membrane proteins need to be integrated in complex assemblies by interaction with soluble and membrane-integrated subunits in order to adopt stable and functionally folded structures. The production of complete molecular machines by CF expression as advancement of the production of only individual subunits would open a variety of new possibilities to study their assembly mechanisms, function, or composition. We demonstrate the successful CF formation of large molecular complexes consisting of both membrane-integrated and soluble subunits by expression of the atp operon from Caldalkalibacillus thermarum strain TA2.A1 using Escherichia coli extracts. The operon comprises nine open reading frames, and the 542-kDa F1Fo-ATP synthase complex is composed of 9 soluble and 16 membrane-embedded proteins in the stoichiometry α3β3γδ?ab2c13. Complete assembly into the functional complex was accomplished in all three typically used CF expression modes by (i) solubilizing initial precipitates, (ii) cotranslational insertion into detergent micelles or (iii) cotranslational insertion into preformed liposomes. The presence of all eight subunits, as well as specific enzyme activity and inhibition of the complex, was confirmed by biochemical analyses, freeze-fracture electron microscopy, and immunogold labeling. Further, single-particle analysis demonstrates that the structure and subunit organization of the CF and the reference in vivo expressed ATP synthase complexes are identical. This work establishes the production of highly complex molecular machines in defined environments either as proteomicelles or as proteoliposomes as a new application of CF expression systems.  相似文献   

17.
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.  相似文献   

18.
The F1Fo-ATP synthase utilizes the transmembrane H+ gradient for the synthesis of ATP. Fo subunit c-ring plays a key role in transporting H+ through Fo in the membrane. We investigated the interactions of Escherichia coli subunit c with dimyristoylphosphatidylcholine (DMPC-d54) at lipid/protein ratios of 50:1 and 20:1 by means of 2H-solid-state NMR. In the liquid-crystalline state of DMPC, the 2H-NMR moment values and the order parameter (SCD) profile were little affected by the presence of subunit c, suggesting that the bilayer thickness in the liquid-crystalline state is matched to the transmembrane hydrophobic surface of subunit c. On the other hand, hydrophobic mismatch of subunit c with the lipid bilayer was observed in the gel state of DMPC. Moreover, the viscoelasticity represented by a square-law function of the 2H-NMR relaxation was also little influenced by subunit c in the fluid phase, in contrast with flexible nonionic detergents or rigid additives. Thus, the hydrophobic matching of the lipid bilayer to subunit c involves at least two factors, the hydrophobic length and the fluid mechanical property. These findings may be important for the torque generation in the rotary catalytic mechanism of the F1Fo-ATPse molecular motor.  相似文献   

19.
Lars Langemeyer 《BBA》2007,1767(7):998-1005
FoF1 ATP synthase couples proton flow through the integral membrane portion Fo (ab2c10) to ATP-synthesis in the extrinsic F1-part ((αβ)3γδε) (Escherichia coli nomenclature and stoichiometry). Coupling occurs by mechanical rotation of subunits c10γε relative to (αβ)3δab2. Two residues were found to be essential for proton flow through ab2c10, namely Arg210 in subunit a (aR210) and Asp61 in subunits c (cD61). Their deletion abolishes proton flow, but “horizontal” repositioning, by anchoring them in adjacent transmembrane helices, restores function. Here, we investigated the effects of “vertical” repositioning aR210, cD61, or both by one helical turn towards the N- or C-termini of their original helices. Other than in the horizontal the vertical displacement changes the positions of the side chains within the depth of the membrane. Mutant aR210A/aN214R appeared to be short-circuited in that it supported proton conduction only through EF1-depleted EFo, but not in EFoEF1, nor ATP-driven proton pumping. Mutant cD61N/cM65D grew on succinate, retained the ability to synthesize ATP and supported passive proton conduction but apparently not ATP hydrolysis-driven proton pumping.  相似文献   

20.
The F1c10 subcomplex of the yeast F1F0-ATP synthase includes the membrane rotor part c10-ring linked to a catalytic head, (αβ)3, by a central stalk, γδϵ. The Saccharomyces cerevisiae yF1c10·ADP subcomplex was crystallized in the presence of Mg·ADP, dicyclohexylcarbodiimide (DCCD), and azide. The structure was solved by molecular replacement using a high resolution model of the yeast F1 and a bacterial c-ring model with 10 copies of the c-subunit. The structure refined to 3.43-Å resolution displays new features compared with the original yF1c10 and with the yF1 inhibited by adenylyl imidodiphosphate (AMP-PNP) (yF1(I–III)). An ADP molecule was bound in both βDP and βTP catalytic sites. The αDPDP pair is slightly open and resembles the novel conformation identified in yF1, whereas the αTPTP pair is very closed and resembles more a DP pair. yF1c10·ADP provides a model of a new Mg·ADP-inhibited state of the yeast F1. As for the original yF1 and yF1c10 structures, the foot of the central stalk is rotated by ∼40 ° with respect to bovine structures. The assembly of the F1 central stalk with the F0 c-ring rotor is mainly provided by electrostatic interactions. On the rotor ring, the essential cGlu59 carboxylate group is surrounded by hydrophobic residues and is not involved in hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号