首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ataxia-telangiectasia mutated (ATM) is a serine-threonine kinase that is integral in the response to DNA double-stranded breaks (DSBs). Cells and tissues lacking ATM are prone to tumor development and enhanced tumor cell migration and invasion. Interestingly, ATM-deficient cells exhibit high levels of oxidative stress; however, the direct mechanism whereby ATM-associated oxidative stress may contribute to the cancer phenotype remains largely unexplored. Rac1, a member of the Rho family of GTPases, also plays an important regulatory role in cellular growth, motility, and cancer formation. Rac1 can be activated directly by reactive oxygen species (ROS), by a mechanism distinct from canonical guanine nucleotide exchange factor-driven activation. Here we show that loss of ATM kinase activity elevates intracellular ROS, leading to Rac1 activation. Rac1 activity drives cytoskeletal rearrangements resulting in increased cellular spreading and motility. Rac1 siRNA or treatment with the ROS scavenger N-Acetyl-L-cysteine restores wild-type migration. These studies demonstrate a novel mechanism whereby ATM activity and ROS generation regulates Rac1 to modulate pro-migratory cellular behavior.  相似文献   

2.
Platelets play a key role in hemostasis and changes in redox balance are known to alter platelet activation and aggregation. Interestingly, activation of platelets leads to production of reactive oxygen species (ROS), but the role(s) of these ROS remain unclear. Using flow cytometry and chemiluminescence, agonist-induced ROS generation was found to be spatially distinct with stimulation through the major collagen receptor GPVI inducing only intraplatelet ROS while thrombin induced production of extracellular ROS. Platelet activation by either the GPVI-selective agonist convulxin or thrombin was differentially regulated by ROS generation. Thus, surface expression of CD62P, CD40L, or activated integrin alphaIIbbeta3 was abrogated by pharmacologic antioxidants but externalization of phosphatidylserine was not inhibited. Furthermore, extracellular antioxidants SOD/catalase markedly inhibited thrombin-, but not convulxin-, induced CD62P expression and alphaIIbbeta3 activation. The data suggest that ROS selectively regulate biochemical steps in platelet activation and that distinct source(s) of ROS and discrete redox-sensitive pathway(s) may control platelet activation in response to GPVI or thrombin stimulation. Thus, targeting ROS with site-specific antioxidants may differentially regulate platelet activation via thrombin or collagen.  相似文献   

3.
The DNA damage response (DDR) cascade and ROS (reactive oxygen species) signaling are both involved in the induction of cell death after DNA damage, but a mechanistic link between these two pathways has not been clearly elucidated. This study demonstrates that ROS induction after treatment of cells with neocarzinostatin (NCS), an ionizing radiation mimetic, is at least partly mediated by increasing histone H2AX. Increased levels of ROS and cell death induced by H2AX overexpression alone or DNA damage leading to H2AX accumulation are reduced by treating cells with the antioxidant N-Acetyl-L-Cysteine (NAC), the NADP(H) oxidase (Nox) inhibitor DPI, expression of Rac1N17, and knockdown of Nox1, but not Nox4, indicating that induction of ROS by H2AX is mediated through Nox1 and Rac1 GTPase. H2AX increases Nox1 activity partly by reducing the interaction between a Nox1 activator NOXA1 and its inhibitor 14-3-3zeta. These results point to a novel role of histone H2AX that regulates Nox1-mediated ROS generation after DNA damage.  相似文献   

4.
Tapas Saha  Eliot M. Rosen 《FEBS letters》2009,583(9):1535-8232
Previous studies have shown that the breast cancer suppressor BRCA1 stimulates antioxidant gene expression and protects cells against oxidative stress. To further examine this important function, we tested whether BRCA1 could modulate intracellular levels of reactive oxygen species (ROS). Wild-type BRCA1 (but not a cancer-associated mutant) significantly reduced ROS levels, determined by DCF fluorescence assays by flow cytometry and confocal microscopy. The BRCA1 and REF1 pathways for reduction of ROS levels appear to exhibit cross-talk. BRCA1 also reduced the levels of protein nitration and H2O2-induced oxidative damage to DNA. Thus, BRCA1 may protect cellular macromolecules by reducing intracellular ROS levels.  相似文献   

5.
Engraft cells are often exposed to oxidative stress and inflammation; therefore, any factor that can provide the stem cells resistance to these stresses may yield better efficacy in stem cell therapy. Studies indicate that histone deacetylase (HDACs) inhibitors alleviate damage induced by oxidative stress. In this study, we investigated whether regulation of reactive oxygen species (ROS) occurs through the HDAC inhibitor trichostatin A (TSA) in human bone marrow‐mesenchymal stem cells (hBM‐MSCs). Intracellular ROS levels increased following exposure to hydrogen peroxide (H2O2), and were suppressed by TSA treatment. Levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) increased following treatment with 200 nM TSA and to a lesser level at 1–5 μM TSA. Cell protective effects against oxidative stress were significantly increased in TSA‐MSCs after treatment with low doses of TSA (50–500 nM) and decreased with high doses of TSA (5–10 μM). Consistent results were obtained with immunoblot analysis for caspase3. Investigation of Forkhead box O1 (FOXO1), superoxide dismutase 2 (SOD2), and p53 levels to determine intracellular signaling by TSA in oxidative stress‐induced MSCs demonstrated that expression of phosphorylated‐FOXO1 and phosphorylated‐SOD2 decreased in H2O2‐treated MSCs while levels of p53 increased. These effects were reversed by the treatment of 200 nM TSA. These results suggest that the main function of ROS modulation by TSA is activated through SOD2 and FOXO1. Thus, optimal treatment with TSA may protect hBM‐MSCs against oxidative stress. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We sought to explore the relationship between renal lesion features and genetic mutations in tuberous sclerosis complex (TSC) patients. TSC patients with renal lesions were subjected to TSC1/2 gene next-generation sequencing (NGS). TSC1/2 mutation types and imaging examinations were screened for combined analysis of genetic and clinical features. Seventy-three probands among TSC patients with renal lesions were included. Twenty affected relatives were also included. In total, 93 patients were included. Eighty patients (86.0%) had bilateral renal angiomyolipomas (AMLs), and one had epithelioid AML. Two patients had polycystic kidney disease, one had renal cell carcinoma, and one had Wilms tumor. Among the 73 probands, four had TSC1 mutations, 53 had TSC2 mutations, and 16 had no mutations identified (NMI). There was no statistically significant difference between TSC1 mutation, TSC2 mutation and NMI group (P= 0.309), or between familial and sporadic groups (P= 0.775) when considering AML size. There was no statistically significant difference between pathogenic/likely pathogenic and benign/likely benign/NMI groups (P= 0.363) or among patients with different mutation types of TSC2 (P= 0.906). The relationship between the conditions of TSC gene mutations and the severity of renal lesions still needs more analysis. Patients with NMI, particularly those with familial disease, need more attention because the pathogenesis remains unknown.  相似文献   

7.
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.  相似文献   

8.
Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP.  相似文献   

9.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

10.
11.
12.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

13.
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.  相似文献   

14.
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4′-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl sulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR.  相似文献   

15.
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl sulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR.  相似文献   

16.
The mechanism of free radical production by complex I deficiency is ill-defined, although it is of significant contemporary interest. This study studied the ROS production and antioxidant defenses in children with mitochondrial NADH dehydrogenase deficiency. ROS production has remained significantly elevated in patients compared to controls. The expression of all antioxidant enzymes significantly increased at mRNA level. However, the enzyme activities did not correlate with high mRNA or protein expression. Only the activity of superoxide dismutase (SOD) was found to correlate with higher mRNA expression in patient derived cell lines. The activities of the enzymes such as glutathione peroxidase (GPx), Catalase (CAT) and glutathione-S-transferase (GST) were significantly reduced in patients (p<0.05 or p<0.01). Glutathione reductase (GR) activity and intracellular glutathione (GSH) levels were not changed. Decreased enzyme activities could be due to post-translational or oxidative modification of ROS scavenging enzymes. The information on the status of ROS and marking the alteration of ROS scavenging enzymes in peripheral lymphocytes or lymphoblast cell lines will provide a better way to design antioxidant therapies for such disorders.  相似文献   

17.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

18.
Lipid rafts play an important role in regulating cellular processes and functions. Here, we demonstrate that in microglia stimulated with the pro-inflammatory lipid lysophosphatidylcholine (LPC), caspase-1 activation and NADPH oxidase activity depend on intact lipid rafts. Disruption of lipid rafts with methyl-β-cyclodextrin, fumonisin B1 or nystatin prevented LPC-stimulated caspase-1 activation and reactive oxygen species (ROS) production, whereas LPC-induced Na+ influx remained unaffected. Since ROS regulate caspase-1 activity in LPC-stimulated microglia, the effects of lipid raft-disrupting agents on caspase-1 activation can be related to their inhibition of NADPH oxidase-mediated ROS production.  相似文献   

19.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

20.
Tuberous sclerosis complex (TSC) is an autosomal dominant benign tumour syndrome caused by mutations to either the TSC1 or TSC2 tumour suppressor gene. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a protein complex that integrates inputs from multiple signalling cascades to inactivate the small GTPase rheb, and thereby inhibit mTOR-dependent cell growth. We have used matrix-assisted laser desorption/ionisation time-of-flight and Fourier transform mass spectrometry to identify TSC1 and TSC2 phosphorylation sites and candidate TSC1 and TSC2 interacting proteins. We identified three sites of TSC2 phosphorylation and a novel site of TSC1 phosphorylation, and investigated the roles of these sites in regulating the activity of the TSC1-TSC2 complex. In addition, we identified three TSC1-TSC2 interacting proteins, including DOCK7 a putative rhebGEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号