首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous endoxylanases from mesophilic fungi have been purified and characterized. However, endoxylanases from cold-adapted fungi, especially those from Antarctica, have been less studied. In this work, a cDNA from the Antarctic fungus Cladosporium sp. with similarity to endoxylanases from glycosyl hydrolase family 10, was cloned and expressed in Pichia pastoris. The pure recombinant enzyme (named XynA) showed optimal activity on xylan at 50 °C and pH 6–7. The enzyme releases xylooligosaccharides but not xylose, indicating that XynA is a classical endoxylanase. The enzyme was most active on xylans with high content of arabinose (rye arabinoylan and wheat arabinoxylan) than on xylans with low content of arabinose (oat spelts xylan, birchwood xylan and beechwood xylan). Finally, XynA showed a very low thermostability. After 20–30 min of incubation at 40 °C, the enzyme was completely inactivated, suggesting that XynA would be the most thermolabile endoxylanase described so far in filamentous fungi. This is one of the few reports describing the heterologous expression and characterization of a xylanase from a fungus isolated from Antarctica.  相似文献   

2.
Two family 11 endoxylanases (EC 3.2.1.8) were functionally displayed on the surface of bacteriophage M13. The genes encoding endo-1,4-xylanase I from Aspergillus niger (ExlA) and endo-1,4-xylanase A from Bacillus subtilis (XynA) were fused to the gene encoding the minor coat protein g3p in phagemid vector pHOS31. Phage rescue resulted in functional monovalent display of the enzymes as was demonstrated by three independent tests. Firstly, purified recombinant phage particles showed a clear hydrolytic activity in an activity assay based on insoluble, chromagenic arabinoxylan substrate. Secondly, specific binding of endoxylanase displaying phages to immobilized endoxylanase inhibitors was demonstrated by interaction ELISA. Finally, two rounds of selection and amplification in a biopanning procedure against immobilized endoxylanase inhibitor were performed. Phages displaying endoxylanases were strongly enriched from background phages displaying unrelated proteins. These results open perspectives to use phage display for analysing protein-protein interactions at the interface between endoxylanases and their inhibitors. In addition, this technology should enable engineering of endoxylanases into novel variants with altered binding properties towards endoxylanase inhibitors.  相似文献   

3.
The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C5 and C6 sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of β-xylosidase xylD slowed the growth of T. saccharolyticum on birchwood xylan and led to an accumulation of short-chain xylo-oligomers, no other single deletion, including the deletion of the previously characterized endoxylanase XynA, had a phenotype distinct from that of the wild type. This result indicates a multiplicity of xylanase enzymes which facilitate xylan degradation in T. saccharolyticum. Growth on xylan was prevented only when a previously uncharacterized endoxylanase encoded by xynC was also deleted in conjunction with xynA. Sequence analysis of xynC indicates that this enzyme, a low-molecular-weight endoxylanase with homology to glycoside hydrolase family 11 enzymes, is secreted yet untethered to the cell wall. Together, these observations expand our understanding of the enzymatic basis of xylan hydrolysis by T. saccharolyticum.  相似文献   

4.
Direct bacterial conversion of the hemicellulose fraction of hardwoods and crop residues to biobased products depends upon extracellular depolymerization of methylglucuronoxylan (MeGAXn), followed by assimilation and intracellular conversion of aldouronates and xylooligosaccharides to fermentable xylose. Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium, secretes a multimodular cell-associated GH10 endoxylanase (XynA1) that catalyzes depolymerization of MeGAXn and rapidly assimilates the principal products, β-1,4-xylobiose, β-1,4-xylotriose, and MeGAX3, the aldotetrauronate 4-O-methylglucuronosyl-α-1,2-xylotriose. Genomic libraries derived from this bacterium have now allowed cloning and sequencing of a unique aldouronate utilization gene cluster comprised of genes encoding signal transduction regulatory proteins, ABC transporter proteins, and the enzymes AguA (GH67 α-glucuronidase), XynA2 (GH10 endoxylanase), and XynB (GH43 β-xylosidase/α-arabinofuranosidase). Expression of these genes, as well as xynA1 encoding the secreted GH10 endoxylanase, is induced by growth on MeGAXn and repressed by glucose. Sequences in the yesN, lplA, and xynA2 genes within the cluster and in the distal xynA1 gene show significant similarity to catabolite responsive element (cre) defined in Bacillus subtilis for recognition of the catabolite control protein (CcpA) and consequential repression of catabolic regulons. The aldouronate utilization gene cluster in Paenibacillus sp. strain JDR-2 operates as a regulon, coregulated with the expression of xynA1, conferring the ability for efficient assimilation and catabolism of the aldouronate product generated by a multimodular cell surface-anchored GH10 endoxylanase. This cluster offers a desirable metabolic potential for bacterial conversion of hemicellulose fractions of hardwood and crop residues to biobased products.  相似文献   

5.
Deletion mutants were constructed from pZEP12, which contained the intact Thermoanaerobacterium saccharolyticum endoxylanase gene (xynA). Deletion of 1.75 kb from the N-terminal end of xynA resulted in a mutant enzyme that retained activity but lost thermostability. Deletion of 1.05 kb from the C terminus did not alter thermostability or activity. The deduced amino acid sequence of T. saccharolyticum B6A-RI endoxylanase XynA was aligned with five other family F beta-glycanases by using the PILEUP program of the Genetics Computer Group package. This multiple alignment of amino acid sequences revealed six highly conserved motifs which included the consensus sequence consisting of a hydrophobic amino acid, Ser or Thr, Glu, a hydrophobic amino acid, Asp, and a hydrophobic amino acid in the catalytic domain. Endoxylanase was inhibited by EDAC [1-(3-dimethylamino propenyl)-3-ethylcarbodiimide hydrochloride], suggesting that Asp and/or Glu was involved in catalysis. Three aspartic acids, two glutamic acids, and one histidine were conserved in all six enzymes aligned. Hydrophobic cluster analysis revealed that two Asp and one Glu occur in the same hydrophobic clusters in T. saccharolyticum B6A-RI endoxylanase and two other enzymes belonging to family F beta-glycanases and suggests their involvement in a catalytic triad. These two Asp and one Glu in XynA from T. saccharolyticum were targeted for analysis by site-specific mutagenesis. Substitution of Asp-537 and Asp-602 by Asn and Glu-600 by Gln completely destroyed endoxylanase activity. These results suggest that these three amino acids form a catalytic triad that functions in a general acid catalysis mechanism.  相似文献   

6.
Qu W  Shao W 《Biotechnology letters》2011,33(7):1407-1416
An endoxylanase gene, xynA, was cloned from Bacillus pumilus ARA and expressed in Escherichia coli. The open reading frame of the xynA gene was 687 bp encoding a signal peptide and a mature xylanase with a molecular mass of 23 kDa. The enzyme was categorized as a glycosyl hydrolase family 11 member based on the sequence analysis of the putative catalytic domain. The recombinant XynA (Bpu XynA) was purified to homogeneity by Ni–NTA and ion exchange chromatography on DEAE–Sepharose FF. The enzyme exhibited highest activity at pH 6.6 and 50°C. The purified Bpu XynA was stable for at least 2 h at 45°C, and retained over 50% residual activity after being incubated at 60°C for 1 h. The activity of the xylanase was not significantly affected by metal ions and EDTA. The K m and K cat /K m of Bpu XynA for oat-spelt xylan were 5.53 mg/ml and 10.14 ml/mg s at 50°C and pH 6.6. The main product of hydrolysis by Bpu XynA was xylooligosaccharide. The results revealed that the consumption of grass xylan by B. pumilus ARA depended on the synergistic reactions of Bpu XynA and Bpu arabinosidase, and that a typical GH11 xylanase e.g. Tla XynA had capability to remove the side chain of xylan. The properties Bpu XynA make it promising for application in the production of Bifidobacterium growth-promoting factors and in feed industry.  相似文献   

7.
In vitro selections of stabilized proteins lead to more robust enzymes and, at the same time, yield novel insights into the principles of protein stability. We employed Proside, a method of in vitro selection, to find stabilized variants of TEM-1 β-lactamase from Escherichia coli. Proside links the increased protease resistance of stabilized proteins to the infectivity of a filamentous phage. Several libraries of TEM-1 β-lactamase variants were generated by error-prone PCR, and variants with increased protease resistance were obtained by raising temperature or guanidinium chloride concentration during proteolytic selections. Despite the small size of phage libraries, several strongly stabilizing mutations could be obtained, and a manual combination of the best shifted the profiles for thermal unfolding and temperature-dependent inactivation of β-lactamase by almost 20 °C to a higher temperature. The wild-type protein unfolds in two stages: from the native state via an intermediate of the molten-globule type to the unfolded form. In the course of the selections, the native protein was stabilized by 27 kJ mol− 1 relative to the intermediate and the cooperativity of unfolding was strongly increased. Three of our stabilizing replacements (M182T, A224V, and R275L) had been identified independently in naturally occurring β-lactamase variants with extended substrate spectrum. In these variants, they acted as global suppressors of destabilizations caused by the mutations in the active site. The comparison between the crystal structure of our best variant and the crystal structure of the wild-type protein indicates that most of the selected mutations optimize helices and their packing. The stabilization by the E147G substitution is remarkable. It removes steric strain that originates from an overly tight packing of two helices in the wild-type protein. Such unfavorable van der Waals repulsions are not easily identified in crystal structures or by computational approaches, but they strongly reduce the conformational stability of a protein.  相似文献   

8.
A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14–20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to ~60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed ~2.8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.  相似文献   

9.
Efficient degradation of plant polysaccharides in rumen requires xylanolytic enzymes with a high catalytic capacity. In this study, a full-length xylanase gene (xynA) was retrieved from the sheep rumen. The deduced XynA sequence contains a putative signal peptide, a catalytic motif of glycoside hydrolase family 10 (GH10), and an extra C-terminal proline-rich sequence without a homolog. To determine its function, both mature XynA and its C terminus-truncated mutant, XynA-Tr, were expressed in Escherichia coli. The C-terminal oligopeptide had significant effects on the function and structure of XynA. Compared with XynA-Tr, XynA exhibited improved specific activity (12-fold) and catalytic efficiency (14-fold), a higher temperature optimum (50°C versus 45°C), and broader ranges of temperature and pH optima (pH 5.0 to 7.5 and 40 to 60°C versus pH 5.5 to 6.5 and 40 to 50°C). Moreover, XynA released more xylose than XynA-Tr when using beech wood xylan and wheat arabinoxylan as the substrate. The underlying mechanisms responsible for these changes were analyzed by substrate binding assay, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), and xylooligosaccharide hydrolysis. XynA had no ability to bind to any of the tested soluble and insoluble polysaccharides. However, it contained more α helices and had a greater affinity and catalytic efficiency toward xylooligosaccharides, which benefited complete substrate degradation. Similar results were obtained when the C-terminal sequence was fused to another GH10 xylanase from sheep rumen. This study reveals an engineering strategy to improve the catalytic performance of enzymes.  相似文献   

10.
The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candidaspecies known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. kruseidemands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.  相似文献   

11.

Background

There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.

Methodology and Principal Findings

We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.

Conclusions and Significance

We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.  相似文献   

12.
During growth on xylan and xylose Thermoanaerobacterium saccharolyticum B6A-RI produced endoxylanase, β-xylosidase, arabinofuranosidase, and acetyl esterase, and the first three activities appeared to be produced coordinately. During nonlimiting growth on xylan, these enzyme activities were predominantly cell associated; however, during growth on limiting concentrations of xylan, the majority of endoxylanase activity was extracellular rather than cell associated. Endoxylanase, β-xylosidase, and arabinofuranosidase activities were induced by xylan, xylose, and arabinose, respectively. Acetyl esterase activity was constitutive, and endoxylanase activity was catabolite repressed by glucose. Extracellular endoxylanase existed as a high-molecular-weight complex (molecular weight, more than 106). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms, the crude endoxylanase complex was composed of at least six activity bands. Endoxylanase was purified by gel filtration with Sephacryl S-300 and affinity chromatography with xylan coupled to Sepharose CL-4B preequilibrated to 45°C with 50 mM sodium acetate buffer (pH 4.0) and eluted with 0.1% soluble xylan. A single area of endoxylanase activity was identified on the zymogram; when this activity was analyzed by SDS-PAGE, it was composed of a major protein with a molecular weight of approximately 160,000 and a minor protein with a molecular weight of approximately 130,000. The endoxylanase activity stained with Schiff's reagent, indicative of glycoproteins, displayed a specific activity of 41 U/mg of protein on xylan, and had pH and temperature optima of 6.0 and 70°C, respectively.  相似文献   

13.
Xylanases are crucial for lignocellulosic biomass deconstruction and generally contain noncatalytic carbohydrate-binding modules (CBMs) accessing recalcitrant polymers. Understanding how multimodular enzymes assemble can benefit protein engineering by aiming at accommodating various environmental conditions. Two multimodular xylanases, XynA and XynB, which belong to glycoside hydrolase families 11 (GH11) and GH10, respectively, have been identified from Caldicellulosiruptor sp. strain F32. In this study, both xylanases and their truncated mutants were overexpressed in Escherichia coli, purified, and characterized. GH11 XynATM1 lacking CBM exhibited a considerable improvement in specific activity (215.8 U nmol−1 versus 94.7 U nmol−1) and thermal stability (half-life of 48 h versus 5.5 h at 75°C) compared with those of XynA. However, GH10 XynB showed higher enzyme activity and thermostability than its truncated mutant without CBM. Site-directed mutagenesis of N-terminal amino acids resulted in a mutant, XynATM1-M, with 50% residual activity improvement at 75°C for 48 h, revealing that the disordered region influenced protein thermostability negatively. The thermal stability of both xylanases and their truncated mutants were consistent with their melting temperature (Tm), which was determined by using differential scanning calorimetry. Through homology modeling and cross-linking analysis, we demonstrated that for XynB, the resistance against thermoinactivation generally was enhanced through improving both domain properties and interdomain interactions, whereas for XynA, no interdomain interactions were observed. Optimized intramolecular interactions can accelerate thermostability, which provided microbes a powerful evolutionary strategy to assemble catalysts that are adapted to various ecological conditions.  相似文献   

14.
The Bacillus subtilis endoxylanase XynA (BSXY) is frequently used to improve the functionality of arabinoxylan-containing material in cereal based industries. The presence of endogenous Triticum aestivum xylanase inhibitors (TAXI-I and TAXI-II) in wheat is a real concern as they have a direct negative impact on the efficiency of this enzyme. Here, we used the recently determined structure of the complex between TAXI-I and an endoxylanase of Aspergillus niger to develop inhibitor-insensitive BSXY variants by site-directed mutagenesis of strategically chosen amino acids. We either induced steric hindrance to reject the inhibitors or interrupted key interactions with the inhibitors in the endoxylanase substrate-binding groove. The first strategy was successfully applied to position G12 where G12W combined inhibition insensitivity with unharmed catalytic performance. Variants from the second strategy showed altered inhibitor sensitivities concomitant with changes in enzyme activities and allowed to gain insight in the binding-mode of both TAXI-I and TAXI-II with BSXY.  相似文献   

15.
Secretion of xylanase activities by Bacillus subtilis 168 supports the development of this well-defined genetic system for conversion of methylglucuronoxylan (MeGAXn [where n represents the number of xylose residues]) in the hemicellulose component of lignocellulosics to biobased products. In addition to the characterized glycosyl hydrolase family 11 (GH 11) endoxylanase designated XynA, B. subtilis 168 secretes a second endoxylanase as the translated product of the ynfF gene. This sequence shows remarkable homology to the GH 5 endoxylanase secreted by strains of Erwinia chrysanthemi. To determine its properties and potential role in the depolymerization of MeGAXn, the ynfF gene was cloned and overexpressed to provide an endoxylanase, designated XynC, which was characterized with respect to substrate preference, kinetic properties, and product formation. With different sources of MeGAXn as the substrate, the specific activity increased with increasing methylglucuronosyl substitutions on the beta-1,4-xylan chain. With MeGAXn from sweetgum as a preferred substrate, XynC exhibited a Vmax of 59.9 units/mg XynC, a Km of 1.63 mg MeGAXn/ml, and a k(cat) of 2,635/minute at pH 6.0 and 37 degrees C. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and 1H nuclear magnetic resonance data revealed that each hydrolysis product has a single glucuronosyl substitution penultimate to the reducing terminal xylose. This detailed analysis of XynC from B. subtilis 168 defines the unique depolymerization process catalyzed by the GH 5 endoxylanases. Based upon product analysis, B. subtilis 168 secretes both XynA and XynC. Expression of xynA was subject to MeGAXn induction; xynC expression was constitutive with growth on different substrates. Translation and secretion of both GH 11 and GH 5 endoxylanases by the fully sequenced and genetically malleable B. subtilis 168 recommends this bacterium for the introduction of genes required for the complete utilization of products of the enzyme-catalyzed depolymerization of MeGAXn. B. subtilis may serve as a model platform for development of gram-positive biocatalysts for conversion of lignocellulosic materials to renewable fuels and chemicals.  相似文献   

16.
Phenolic compounds released during pretreatment of lignocellulosic biomass influence its enzymatic hydrolysis. To understand the effects of these compounds on the kinetic properties of xylan-degrading enzymes, the present study employed the recombinant cellulosomal endo-β-1,4-xylanase, thermostable GH11 XynA protein from Clostridium thermocellum, as an enzyme model to evaluate the effects of 4-hydroxybenzoic acid, gallic acid, vanillin, tannic acid, p-coumaric acid, ferulic acid, syringaldehyde, and cinnamic acid. XynA was deactivated by the assayed phenols at 60 °C, presenting the strongest deactivation in the presence of tannic acid, with an activity reduction of about 80 %. Thermal stability of XynA was influenced by ferulic acid, syringaldehyde, cinnamic acid, 4-hydroxybenzoic acid, and p-coumaric acid. The hydrolysis rate of oat-spelt xylan by XynA was influenced by temperature, being unable to hydrolyze at 40 °C in the presence of tannic acid. On hydrolysis at 60 °C, the presence of gallic and tannic acid caused a major reduction in reducing sugar production, generating 3.74 and 2.15 g.L-1 of reducing sugar, respectively, whereas the reaction in the absence of phenols generated 4.41 g.L-1. When XynA was pre-deactivated by phenols it could recover most of its activity at 40 °C, however, at 60 °C activity could not be reestablished.  相似文献   

17.
Pediocin PA-1 is an antimicrobial peptide (called bacteriocin) that shows inhibitory activity against the food-borne pathogen Listeria monocytogenes. To elucidate which residue(s) is responsible for this function, the antimicrobial activities of pediocin PA-1 mutants were evaluated and compared. Each of the 44 native codons was replaced with the NNK triplet oligonucleotide in a technique termed NNK scanning, and 35 mutations at each position were examined for antimicrobial activities using a modified colony overlay screening method. As a consequence, the functional responsibility of each residue was estimated by counting the number of active mutants, allowing us to identify candidate essential/variable residues. Activity was abrogated by many of the mutations at residues Y2, G6, C9, C14, C24, W33, G37, and C44, indicating that these residues may be essential. In contrast, activity was retained by almost all versions harboring mutations at K1, T8, G10, S13, G19, N28, and N41, indicating that these are functionally redundant residues. Sequence analysis revealed that only the wild type was active and 14 and 11 substitutions were inactive at G6 and C14, respectively, while 12 and 11 substitutions were active and 2 and 0 substitutions were inactive at T8 and K1, respectively. These findings suggest that NNK scanning is effective for determining essential and variable residues in pediocin PA-1, leading to an elucidation of structure-function relationships and to improvements in the antimicrobial function efficiently by peptide engineering.  相似文献   

18.
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N?=?498, mean age 52 and N?=?1002, mean age 44) and one from a non-urban environment (N?=?501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.  相似文献   

19.

Background

Peroxisome proliferator-activated receptor delta (PPARD) is nuclear hormone receptor involved in colorectal cancer (CRC) differentiation and progression. The purpose of this study was to determine prevalence and spectrum of variants in the PPARD gene in CRC, and their contribution to clinicopathological endpoints.

Methods and Findings

Direct sequencing of the PPARD gene was performed in 303 primary tumors, in blood samples from 50 patients with ≥3 affected first-degree relatives, 50 patients with 2 affected first-degree relatives, 50 sporadic patients, 360 healthy controls, and in 6 colon cancer cell lines. Mutation analysis revealed 22 different transversions, 7 of them were novel. Three of all variants were somatic (c.548A>G, p.Y183C, c.425-9C>T, and c.628-16G>A). Two missense mutations (p.Y183C and p.R258Q) were pathogenic using in silico predictive program. Five recurrent variants were detected in/adjacent to the exons 4 (c.1-87T>C, c.1-67G>A, c.130+3G>A, and c.1-101-8C>T) and exon 7 (c.489T>C). Variant c.489C/C detected in tumors was correlated to worse differentiation (P = 0.0397).

Conclusions

We found 7 novel variants among 22 inherited or acquired PPARD variants. Somatic and/or missense variants detected in CRC patients are rare but indicate the clinical importance of the PPARD gene.  相似文献   

20.
The thermostability of the endo-beta-1,4-xylanase from Thermomyces lanuginosus (xynA) was improved by directed evolution using error-prone PCR. Transformants expressing the variant xylanases were first selected on 0.4% Remazol Brilliant Blue-xylan and then exposed to 80 degrees C. Whereas the wild type XynA lost 90% activity after 10 min at 80 degrees C, five mutants displayed both higher stabilities and activities than XynA. Four mutants were subjected to further mutagenesis to improve the stability and activity of the xylanase. Subsequent screening revealed three mutants with enhanced thermostability. Mutant 2B7-10 retained 71% of its activity after treatment at 80 degrees C for 60 min and had a half-life of 215 min at 70 degrees C, which is higher than that attained by XynA. Sequence analysis of second generation mutants revealed that mutations were not concentrated in any particular region of the protein and exhibited much variation. The best mutant obtained from this study was variant 2B7-10, which had a single substitution (Y58F) in beta-sheet A of the protein, which is the hydrophilic, solvent-accessible outer surface of the enzyme. Most of the mutants obtained in this study displayed a compromise between stability and activity, the only exception being mutant 2B7-10. This variant showed increased activity and thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号