首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An x-ray study indicated that microsomal prostaglandin E synthase type 2 (mPGES2) is a heme-bound protein and catalyzes prostaglandin (PG) H2 degradation, but not PGE2 formation (Yamada, T., and Takusagawa, F. (2007) Biochemistry 46, 8414–8424). In response to the x-ray study, Watanabe et al. claimed that mPGES2 is a heme-free protein and that both the heme-free and heme-bound proteins have PGE2 synthesis activity in the presence of dithiothreitol (Watanabe, K., Ito, S., and Yamamoto, S. (2008) Biochem. Biophys. Res. Commun. 367, 782–786). To resolve the contradictory results, the heme-binding scheme of mPGES2 was further characterized in vivo and in vitro by absorption and fluorescence spectroscopies. A substantial amount of heme-bound mPGES2 was detected in cell extracts. The heme content in mPGES2 was increased along with an increase in Fe3+ in the culture medium. Heme-free mPGES2 was converted to the heme-bound form by mixing it with pig liver extract, indicating that mPGES2 is capable of forming a complex with heme in mammalian cells. Heme binds to mPGES2 only in the presence of glutathione. The newly determined heme dissociation constant (2.9 nm) supports strongly that mPGES2 is a heme-bound protein in vivo. The bound heme was not dissociated by oxidation by H2O2 or reduction by glutathione or 2-mercaptoethanol. However, reduction by dithiothreitol (an artificial reducing compound) induced the bound heme to dissociate from mPGES2 and released heme-free mPGES2, which exhibited PGE2 synthesis activity in vitro. Imidazole bound to mPGES2 by stacking on the bound heme and inhibited heme oxidation by H2O2 and reduction by dithiothreitol.  相似文献   

2.
Prostaglandin (PG)E2 is a critical lipid mediator connecting chronic inflammation to cancer. The anti-carcinogenic epigallocatechin-3-gallate (EGCG) from green tea (Camellia sinensis) suppresses cellular PGE2 biosynthesis, but the underlying molecular mechanisms are unclear. Here, we investigated the interference of EGCG with enzymes involved in PGE2 biosynthesis, namely cytosolic phospholipase (cPL)A2, cyclooxygenase (COX)-1 and -2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). EGCG failed to significantly inhibit isolated COX-2 and cPLA2 up to 30 μM and moderately blocked isolated COX-1 (IC50 > 30 μM). However, EGCG efficiently inhibited the transformation of PGH2 to PGE2 catalyzed by mPGES-1 (IC50 = 1.8 μM). In lipopolysaccharide-stimulated human whole blood, EGCG significantly inhibited PGE2 generation, whereas the concomitant synthesis of other prostanoids (i.e., 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-keto PGF) was not suppressed. Conclusively, mPGES-1 is a molecular target of EGCG, and inhibition of mPGES-1 is seemingly the predominant mechanism underlying suppression of cellular PGE2 biosynthesis by EGCG.  相似文献   

3.
The amino acid sequence of membrane-associated prostaglandin (PG) E synthase-2 (mPGE synthase-2), which has a broad specificity in its thiol requirement for a catalytic activity, has the consensus region from 104Leu to 120Leu found in glutaredoxin and of thioredoxin. The sequence of Cys-x-x-Cys in the consensus region is the active site for thioredoxin and mPGE synthase-2 also has this amino acid sequence (110Cys-x-x-113Cys). The mutation from 110Cys to Ser or the double mutation from 110Cys and 113Cys to Ser caused loss of PGE synthase activity, whereas the single mutation from 113Cys to Ser did not affect the enzyme activity. These results indicate that 110Cys, but not 113Cys, is the essential amino acid in the active site of mPGE synthase-2. 110Cys is an important amino acid in PGE synthase activity and plays the critical role as Cys at the same position in redoxin. Moreover, we found that the reduced form of lipoic acid (dihydrolipoic acid) serves as one of the natural activators of mPGE synthase-2 in the cells.  相似文献   

4.
The induced synthesis of bioactive prostanoids downstream of cyclooxygenase-2 (COX-2) and prostaglandin H2 (PGH2) exerts a critical event in colorectal carcinogenesis. Here we demonstrate that APCMin/+ mice with genetic deletion of microsomal prostaglandin E synthase-1 (mPGES-1), which catalyses the terminal conversion of PGH2 into PGE2, surprisingly develop more and generally larger intestinal tumors than do mPGES-1 wild type littermates (mean number of tumors/intestine 80 vs. 38, p < 0.0005, mean tumor diameter 1.64 vs. 1.12 mm, p < 0.0005). No deviation regarding the expression of other PGE2 related enzymes (COX-1, COX-2, mPGES-2, cPGES, and 15-PGDH) or receptors (EP1-4) was obvious among the mPGES-1 deficient mice. PGE2 levels were suppressed in tumors of mPGES-1 deficient animals, but the concentrations of other PGH2 derived prostanoids were generally enhanced, being most prominent for TxA2 and PGD2. Thus, we hypothesise that a redirected synthesis towards other lipid mediators might (over)compensate for loss of mPGES-1/PGE2 during intestinal tumorigenesis. Nevertheless, our results question the suitability for mPGES-1 targeting therapy in the treatment or prevention of colorectal cancer.  相似文献   

5.
Cytosolic prostaglandin (PG) E synthase was purified from human brain cortex. The N-terminal amino acid sequence, PMTLGYXNIRGL, was identical to that of the human mu-class glutathione transferase (GST) M2 subunit. Complementary DNAs for human GSTM2, GSTM3, and GSTM4 subunits were cloned, and recombinant proteins were expressed as homodimers in Escherichia coli. The recombinant GSTM2-2 and 3-3 catalyzed the conversion of PGH2 to PGE2 at the rates of 282 and 923 nmol/min/mg of protein, respectively, at the optimal pH of 8, whereas GSTM4-4 was inactive; although all three enzymes showed GST activity. The PGE synthase activity depended on thiols, such as glutathione, dithiothreitol, 2-mercaptoethanol, or L-cysteine. Michaelis-Menten constants and turnover numbers for PGH2 were 141 M and 10.8 min–1 for GSTM2-2 and 1.5 mM and 130 min–1 for GSTM3-3, respectively. GSTM2-2 and 3-3 may play crucial roles in temperature regulation, nociception, and sleep-wake regulation by producing PGE2 in the brain.  相似文献   

6.
PhzE from Pseudomonas aeruginosa catalyzes the first step in the biosynthesis of phenazine-1-carboxylic acid, pyocyanin, and other phenazines, which are virulence factors for Pseudomonas species. The reaction catalyzed converts chorismate into aminodeoxyisochorismate using ammonia supplied by a glutamine amidotransferase domain. It has structural and sequence homology to other chorismate-utilizing enzymes such as anthranilate synthase, isochorismate synthase, aminodeoxychorismate synthase, and salicylate synthase. Like these enzymes, it is Mg2 + dependent and catalyzes a similar SN2" nucleophilic substitution reaction. PhzE catalyzes the addition of ammonia to C2 of chorismate, as does anthranilate synthase, yet unlike anthranilate synthase it does not catalyze elimination of pyruvate from enzyme-bound aminodeoxyisochorismate. Herein, the cloning of the phzE gene, high level expression of active enzyme in E. coli, purification, and kinetic characterization of the enzyme is presented, including temperature and pH dependence. Steady-state kinetics give Kchorismate = 20 ± 4 μM, KMg2 + = 294 ± 22 μM, KL-gln = 11 ± 1 mM, and kcat = 2.2 ± 0.2 s− 1 for a random kinetic mechanism. PhzE can use NH4+ as an alternative nucleophile, while Co2 + and Mn2 + are alternative divalent metals.  相似文献   

7.

Background

Glutathione transferases (GSTs) are members of a major family of detoxification enzymes. Here, we report the crystal structure of a sigma-class GST of Bombyx mori, bmGSTS1, to gain insight into the mechanism catalysis.

Methods

The structure of bmGSTS1 and its complex with glutathione were determined at resolutions of 1.9 Å and 1.7 Å by synchrotron radiation and the molecular replacement method.

Results

The three-dimensional structure of bmGSTS1 shows that it exists as a dimer and is similar in structure to other GSTs with respect to its secondary and tertiary structures. Although striking similarities to the structure of prostaglandin D synthase were also detected, we were surprised to find that bmGSTS1 can convert prostaglandin H2 into its E2 form. Comparison of bmGSTS1 with its glutathione complex showed that bound glutathione was localized to the glutathione-binding site (G-site). Site-directed mutagenesis of bmGSTS1 mutants indicated that amino acid residues Tyr8, Leu14, Trp39, Lys43, Gln50, Met51, Gln63, and Ser64 in the G-site contribute to catalytic activity.

Conclusion

We determined the tertiary structure of bmGSTS1 exhibiting prostaglandin E synthase activity.

General significance

These results are, to our knowledge, the first report of a prostaglandin synthase activity in insects.  相似文献   

8.
Prostaglandin H2 not only serves as the common precursor of all other PGs, but also directly triggers signals (e.g. platelet aggregation), depending on its location and translocation. The prostaglandin carrier PGT mediates the transport of several prostanoids, such as PGE2, and PGF. Here we used PGT in the plasma membrane as a model system to test the hypothesis that PGT also transports PGH2. Using wild-type and PGT-expressing MDCK cells, we show that PGH2 uptake is mediated both by simple diffusion and by PGT. The PGH2 influx permeability coefficient for diffusion is (5.66 ± 0.63) × 10−6 cm/s. The kinetic parameters of PGH2 transport by PGT are Km = 376 ± 34 nM and Vmax = 210.2 ± 11.4 fmol/mg protein/s. PGH2 transport by PGT can be inhibited by excess PGE2 or by a PGT inhibitor. We conclude that PGT may play a role in transporting PGH2 across cellular membranes.  相似文献   

9.
Membrane-associated prostaglandin E synthase (mPGE synthase) was previously purified to apparent homogeneity from the microsomal fraction of bovine heart (Watanabe, K., et al., Biochim. Biophys. Acta 1439, 406--414, 1999). The N-terminal 22-amino acid sequence of the purified enzyme was identical to that of the 88th to 109th amino acids deduced from the monkey (AB046026) or human (AK024100) cDNA that encodes a hypothetical protein with unknown function. The primary structure has the consensus region of glutaredoxin and of thioredoxin. We constructed an expression plasmid, using the vector (pTrc-HisA) and the monkey cDNA for the 290-amino-acid polypeptide. The recombinant protein with a M(r) of 33 kDa exhibited PGE synthase activity and was purified to apparent homogeneity by nickel-chelating column chromatography. The V(max) and K(m) values for PGH(2) of the purified recombinant mPGE synthase were about 3.3 mumol/min center dot mg of protein and 28 muM, respectively. The recombinant enzyme was activated by various SH-reducing reagents, i.e., dithiothreitol, glutathione (GSH), and beta-mercaptoethanol, in order of decreasing effectiveness. Moreover, the mRNA distribution was high in the heart and brain, but the mRNA was not expressed in the seminal vesicles. These results indicate that the recombinant mPGE synthase is identical to the enzyme purified from the microsomal fraction of bovine heart, and is a novel type of mPGE synthase based on the primary structure, a broad specificity of thiol requirement, and tissue distribution.  相似文献   

10.
Prostaglandin endoperoxide synthase and thromboxane synthase were both localized mainly in the microsomal fraction of bovine lung. The capacity to convert prostaglanding H2 into TXB2 (thromboxane synthase activity) exceeded the capacity to transform arachidonic acid into products. Thromboxane synthase of lung microsomes was solubilized with Triton X-100 and partially purified by DEAE cellulose chromatography. The preparation thus obtained catalyzed the conversion of PGH2 to a mixture of TXB2 and HHT, whereas PGH1 was predominantly converted to HHD.  相似文献   

11.
12.
Summary Previous studies have suggested the possibility that the non-steroidal antiflammatory drug (NSAID), ibuprofen, may inhibit thromboxane (TX) A2 synthase activity in addition to inhibiting cyclooxygenae activity. Microsomal fractions isolated from the cat lung contain cyclooxygenase as well as prostacyclin (PGI2) synthase, TX synthase, and a GSH-dependent prostaglandin (PG) E2 isomerase activities. When [1-14C] PG endoperoxide H2 (PGH2) was used as substrate, ibuprofen, indomethacin, and meclofenamate exhibited differential effects on terminal enzyme activities. Ibuprofen, at concentrations up to 1 mM, had no effect on the activities of PGI2 synthase, TXA2 synthase of GSH-dependent PGE2 isomerase, whereas indomethacin selectively inhibited PGI2 synthase activity at 5 x 10–4 M and 10–3 M. Meclofenamate selectively inhibited TXA2 synthase activity at 5 x 10–4 M and 10–3 M. At concentrations of 5 x 10–3 M, this selectivity was not oberved, and indomethacin and meclofenamate decreased the formation of both 6-keto-PGF1 and TXB2. These data indicate that the choice of NSAID and the concentration employed may specifically alter PGH2 metabolism. This action may affect the physiologic consequences of the exchange of PGH2 between cells. The data further indicate that indomethacin has the potential for use as a tool to specifically attenuate PGI2 synthase activity in vitro.  相似文献   

13.
We had previously reported a prostaglandin E synthase (bmPGES) in the silkworm Bombyx mori that catalyzes the isomerization of PGH2 to PGE2. The present study aimed to provide a genome-editing characterization of bmPGES in B. mori. Results showed bmPGES gene disruption to result in a reduced content of PGE2. The change affected the expression of chorion genes and egg formation in silkworms. Collectively, the results indicated that bmPGES could be involved in reproduction of B. mori. Therefore, this study provides insights into the physiological role of bmPGES and PGE2 in silkworms.  相似文献   

14.
A Ru-diimine wire, [(4,4′,5,5′-tetramethylbipyridine)2Ru(F9bp)]2+ (tmRu-F9bp, where F9bp is 4-methyl-4′-methylperfluorobiphenylbipyridine), binds tightly to the oxidase domain of inducible nitric oxide synthase (iNOSoxy). The binding of tmRu-F9bp is independent of tetrahydrobiopterin, arginine, and imidazole, indicating that the wire resides on the surface of the enzyme, distant from the active-site heme. Photoreduction of an imidazole-bound active-site heme iron in the enzyme-wire conjugate (kET = 2(1) × 107 s−1) is fully seven orders of magnitude faster than the in vivo process.  相似文献   

15.
Recently we have described the globin-coupled heme containing adenylate cyclase from Leishmania major (HemAC-Lm) that shows an O2 dependent cAMP signaling (Sen Santara, et. al. Proc. Natl. Acad. Sci. U.S.A. 110, 16790–16795 (2013)). The heme iron of HemAC-Lm is expected to participate in oxygen binding and activates adenylate cyclase activity during catalysis, but its interactions with O2 are uncharacterized. We have utilized the HemAC-Lm and stopped-flow methods to study the formation and decay of the HemAC-Lm oxygenated complex at 25 °C. Mixing of the ferrous HemAC-Lm with air-saturated buffer generates a very stable oxygenated complex with absorption maxima at 414, 540 and 576 nm. The distal axial ligand in the deoxygenated ferrous HemAC-Lm is displaced by O2 at a rate of ~ 10 s− 1. To prepare apoprotein of heme iron in HemAC-Lm, we have mutated the proximal His161 to Ala and characterized the mutant protein. The apo as well as heme reconstituted ferric state of the mutant protein shows a ~ 30 fold lower catalytic activity compared to oxygenated form of wild type protein. The oxygenated form of heme reconstituted mutant protein is highly unstable (decay rate = 6.1 s− 1). Decomposition of the oxygenated intermediate is independent of O2 concentration and is monophasic. Thus, the stabilization of ferrous-oxy species is an essential requirement in the wild type HemAC-Lm for a conformational alteration in the sensor domain that, sequentially, activates the adenylate cyclase domain, resulting in the synthesis of cAMP.  相似文献   

16.
Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase.  相似文献   

17.
We have reported tha allicin, a constituent of garlic oil, has no effect on the activities of platelet cyclooxygenase or thromboxane synthase, or vascular PGI2 synthase. The effect of allicin on glutathione (GSH) dependent PGH2 to PGE2 isomerase is unknown. We therefore studied the effect of allicin on PGE2 biosynthesis in a murine mammary adenocarcinoma cell line (No 4526). Intact or sonicated cells were incubated with either 14C-arachidonic acid (AA) or 14C-PHG2, respectively. Following metabolism, products were extracted, separated by TLC and analyzed by radiochromatographic scan. PGE2 was predominantly formed with minimal amounts of PGF and PGD2. Formation of 6-keto-PGF or TXB2 was not detected indicating the absence of TXA2 and PGI2 synthase activity. Indomethacin and ibuprofen inhibited the PGE2 formation (p < 0.05). The enzymatic PGE2 formation in sonicates was blocked by depletion of the cellular non-protein thiols by buthionine sulfoximine and was shown to be dependent on GSH. Allicin, over the range of 10–1000 μM, inhibited the formation of PGE2 in cells exposed to 2.0 μM 14C-AA for 20 min. and in sonicated cells incubated with 20.0 μM 14C-PGH2 for 2 min (p < 0.05). Allicin did not alter cyclooexygenase-mediated oxygen utilization in ram seminal vessicle microsomes, suggesting that allicin selectively inhibits the GSH-dependent PGH2 to PGE2 isomerase in this adenocarcinoma cell line.  相似文献   

18.
This study examined the effect of prostaglandin E2 (PGE2) produced by microsomal prostaglandin E synthase-1 (mPGES-1) on circadian rhythm. Using wild-type mice (WT) and mPGES-1 knockout mice (mPGES-1−/−), I recorded and automatically analyzed the natural behavior of mice in home cages for 24 h and measured brain levels of PGE2. The switch to wakefulness was not smooth, and sleepiness and the total duration of sleep were significantly longer in the mPGES-1−/− mice. Moreover, the basal concentration of PGE2 was significantly lower in the mPGES-1−/− mice. These findings suggest that PGE2 produced by mPGES-1 regulates the onset of wakefulness and the maintenance of circadian rhythm.  相似文献   

19.
Prostaglandin (PG)E2 9-ketoreductase, which catalyzes the conversion of PGE2 to PGF2, was purified from human brain to apparent homogeneity. The molecular weight, isoelectric point, optimum pH, Km value for PGE2, and turnover number were 34,000, 8.2, 6.5–7.5, 1.0 mM, and 7.6 min–1, respectively. Among PGs tested, the enzyme also catalyzed the reduction of other PGs such as PGA2, PGE1, and 13,14-dihydro-15-keto PGF2, but not that of PGD2, 11-PGE2, PGH2, PGJ2, or 12-PGJ2. The reaction product formed from PGE2 was identified as PGF2, by TLC combined with HPLC. This enzyme, as is the case for carbonyl reductase, was NADPH-dependent, preferred carbonyl compounds such as 9,10-phenanthrenequinone and menadione as substrates, and was sensitive to indomethacin, ethacrynic acid, and Cibacron blue 3G-A. The reduction of PGE2 was competitively inhibited by 9,10-phenanthrenequinone, which is a good substrate of this enzyme, indicating that the enzyme catalyzed the reduction of both substrates at the same active site. These results suggest that PGE2 9-ketoreductase, which belongs to the family of carbonyl reductases, contributes to the enzymatic formation of PGF2 in human brain.Special issue dedicated to Dr. Sidney Udenfriend.  相似文献   

20.
Metabolism and action of the prostaglandin endoperoxide PGH2 in rat kidney   总被引:3,自引:0,他引:3  
Kidney membrane fractions metabolized [1-14C]PGH2 to TXB2, PGE2, PGF, PGD2, 6-keto PGF, and HHT. TXA2, as measured by TXB2, was enzymatically formed in cortex microsomes and was identified by thin layer chromatography and gas chromatography - mass spectrometry. PGH2 caused a labile inhibition of cortical PGE2-stimulated adenylate cyclase. PGE2, PGF, and PGD2 are stimulators of cortical adenylate cyclase. The inability of two thromboxane synthetase inhibitors, imidazole and 9,11-azoprosta-5,13 dienoic acid, to block PGH2 inhibition suggested that TXA2 was not an obligatory intermediate in this process. Therefore, a potential function of cortical PGH2 is inhibition of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号