共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Amrane 《World journal of microbiology & biotechnology》2000,16(2):207-209
At the end of culture in a carbon-limited medium, i.e. the best conditions for subsequent autolysis, lactic acid bacteria were harvested and autolysed at 50 °C for 24 h. The resulting supernatant was then successfully tested as a substitute for industrial yeast extract for the supplementation of whey permeate and its conversion into lactic acid: for almost equivalent total nitrogen amounts of both supplements, the same growth and production rates were recorded. 相似文献
2.
Summary Mesophilic lactic acid bacteria were immobilized in calcium alginate gel and added to pasteurized 15% fat cream at a 1.6x109 bacteria per ml inoculation level. A pH of 5.5 was obtained in only two hours while it took 4 hours under classical conditions. Once the immobilized cells were removed, the cream contained 6.1x106 lactic bacteria per ml which was almost 400 times less than the bacterial population obtained at pH 5.5 under a classical fermentation. The fermented cream obtained from immobilized cells showed much less overacidification under subsequent refrigeration. 相似文献
3.
Role of malolactic fermentation in lactic acid bacteria 总被引:7,自引:0,他引:7
Although decarboxylation of malate to lactate by malolactic enzyme does not liberate biologically available energy (e.g., ATP, NADH), the growth rate of many malolactic bacteria is greatly enhanced by malolactic fermentation. The deacidification of the medium due to malate dissipation cannot fully account for this situation. The chemiosmotic theory postulates that another form of energy could generated by translocation of protons through the membrane coupled to end-product efflux. Konings et al. showed that this theory is indeed applicable to lactate efflux in Streptococcus cremoris at pH 7.0. A similar mechanism could account for the observed increased activity in malolactic bacteria. The study in wild type and mutant strains of Streptococcus lactis unable to carry out malolactic fermentation led us to the following conclusions: (1) under glucose non-limiting conditions, malolactic fermentation helps to maintain pH of the medium at a certain level; (2) during glucose limited growth, malolactic fermentation could be coupled with an energetic process independent from that mentioned above. 相似文献
4.
Extractive lactic acid fermentation using ion-exchange resin 总被引:6,自引:0,他引:6
Lactic acid fermentation is an end-product-inhibited reaction. The restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques. Studies were performed by attaching an ion-exchange resin packed column with a 2-L fermentor for separation of lactic acid. The fermentation, in a conventional batch mode, resulted in a lactic acid yield of 0.828 g . g(-1) and a lactic acid productivity of 0.313 g . L(-1) . h(-1). However, these could be further enhanced to 0.929 g . g(-1) and 1.665 g . L(-1) . h(-1) by extractive fermentation techniques. The effect of temperature on extractive fermentation was remarkable and has been included in this work. 相似文献
5.
AIM: Identification of the predominant lactic acid bacteria (LAB) involved in spontaneous fermentations of Almagro eggplants, and evaluation of the biodiversity by molecular typing. METHODS AND RESULTS: Almagro eggplant fermentations in three factories (A, B and C) enjoying Protected Designation of Origin (PDO) status were monitored by chemical and microbiological analysis of brines. LAB isolates from brines were identified by phenotypic analysis and by species-specific PCR reactions and typed by randomly amplified polymorphic DNA (RAPD)-PCR. All isolates from factories A and C belonged to the genus Lactobacillus (Lact.), whereas isolates from factory B belonged to Lactobacillus (50%), Leuconostoc (Ln.) (25%) and Lactococcus (Lc.) (25%); 1.9% of this microbiota was considered cosmopolitan. The genera Leuconostoc and Lactococcus and the species Lact. acidophilus and Lact. paracasei had never previously been reported in Almagro eggplant fermentations. CONCLUSION: Considerable differences in the composition of the lactic acid microbiota participating in the Almagro eggplant fermentations exist. Brine NaCl concentration has a notable influence both in number and in the species participating. SIGNIFICANCE AND IMPACT OF THE STUDY: The original aspect of this work consists of an ecological study of the LAB taking part in spontaneous Almagro eggplant fermentations from different factories. Participation of Leuconostoc and Lactococcus species and of Lact. acidophilus and Lact. paracasei, which had never before been described for this pickle, and the evidence that a lactic fermentation does not always take place, were the most relevant results. 相似文献
6.
Summary The development of various lactic acid bacteria during the early stages of fermentation (1–6 days after ensiling) in fish silage was studied. The first type of organisms that grew fastest was the oval cocci (most of them resembledLeuconostoc mesenteroides andStreptococcus lactis) followed by round cocci (mostlyS. faecalis). The number of oval cocci increased rapidly one day after ensiling and then decreased after 2–3 days. The round cocci increased first after 2–3 days and then decreased slowly after 4–5 days. Lactobacilli began to increase in number (more than 1010 per g silage) first after 6 days. Thus the pH in the silage was mainly lowered by the action of streptococci. Also in MRS medium the pH was more rapidly lowered byS. faecalis than byLactobacillus plantarum and other rods. 相似文献
7.
Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria 总被引:2,自引:0,他引:2
AIMS: To investigate the production of antioxidant activity during fermentation with commonly used dairy starter cultures. Moreover, to study the development of antioxidant activity during fermentation, and the connection to proteolysis and bacterial growth. METHODS AND RESULTS: Antioxidant activity was measured by analysing the radical scavenging activity using a spectrophotometric decolorization assay and lipid peroxidation inhibition was assayed using liposomal model system with a fluorescence method. Milk was fermented with 25 lactic acid bacterial (LAB) strains, and from these six strains, exhibiting the highest radical scavenging activity was selected for further investigation. Leuconostoc mesenteroides ssp. cremoris strains, Lactobacillus jensenii (ATCC 25258) and Lactobacillus acidophilus (ATCC 4356) showed the highest activity with both the methods used. However, the radical scavenging activity was stronger than lipid peroxidation inhibition activity. The development of radical scavenging activity was connected to proteolysis with four strains. Molecular distribution profiles showed that fermentates with high scavenging activity also possessed a higher proportion of peptides in the molecular mass range of 4-20 kDa, while others had mostly large polypeptides and compounds below 4 kDa. In addition, the amount of hydrophobic amino acids was higher in these fermentates. CONCLUSIONS: The development of antioxidant activity was strain-specific characteristic. The development of radical scavengers was more connected to the simultaneous development of proteolysis whereas, lipid peroxidation inhibitory activity was related to bacterial growth. However, high radical scavenging activity was not directly connected to the high degree of proteolysis. SIGNIFICANCE AND IMPACT OF THE STUDY: To the best of our knowledge, this seems to be the first report, which screens possible antioxidant activity among most common dairy LAB strains. Use of such strains improve nutritional value of fermented dairy products. 相似文献
8.
Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours 总被引:1,自引:0,他引:1
A pool of selected lactic acid bacteria was used for the sourdough fermentation of various cereal flours with the aim of synthesizing antioxidant peptides. The radical-scavenging activity of water/salt-soluble extracts (WSE) from sourdoughs was significantly (P < 0.05) higher than that of chemically acidified doughs. The highest activity was found for whole wheat, spelt, rye, and kamut sourdoughs. Almost the same results were found for the inhibition of linoleic acid autoxidation. WSE were subjected to reverse-phase fast protein liquid chromatography. Thirty-seven fractions were collected and assayed in vitro. The most active fractions were resistant to further hydrolysis by digestive enzymes. Twenty-five peptides of 8 to 57 amino acid residues were identified by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. Almost all of the sequences shared compositional features which are typical of antioxidant peptides. All of the purified fractions showed ex vivo antioxidant activity on mouse fibroblasts artificially subjected to oxidative stress. This study demonstrates the capacity of sourdough lactic acid bacteria to release peptides with antioxidant activity through the proteolysis of native cereal proteins. 相似文献
9.
Ensilage of ammonia-treated straw in combination with whey by means of alkaline-adapted lactic acid bacteria 总被引:1,自引:0,他引:1
A lactic acid-producing bacterial association, adapted to alkaline conditions up to pH 10˙0, was tested for its effectiveness as an inoculum for ammonia-treated straw combined with whey. The association proved capable of lowering the pH from 8˙0 to 5˙0 within 2 d, as opposed to about 4 d by the individual populations. In the silage inoculated with the association, the lactic acid content was 98 mg/g dry matter (DM) and no butyric acid was formed. In the non-inoculated control, only 40 mg lactic acid/g DM was formed but the butyric acid amounted to 45˙5 mg/g DM. The association appeared to counteract clostridial growth effectively. 相似文献
10.
Coupled lactic acid fermentation and adsorption 总被引:7,自引:0,他引:7
Polyvinylpyridine (PVP) and activated carbon were evaluated for coupled lactic acid fermentation and adsorption, to prevent the product concentration from reaching inhibitory levels. The lactic acid production doubled as a result of periodical circulation of the fermentation broth through a PVP adsorption column. The adsorbent was then regenerated and the adsorbed lactate harvested, by passing 0.1 N NaOH through the column. However, each adsorption-regeneration cycle caused about 14% loss of the adsorption capacity, thus limiting the practical use of this rather expensive adsorbent. Activated carbon was found much more effective than PVP in lactic acid and lactate adsorption. The cells of Lactobacillus delbrueckii subsp. delbrueckii (LDD) also had strong tendency to adsorb on the carbon. A study was therefore conducted using an activated carbon column for simultaneous cell immobilization and lactate adsorption, in a semi-batch process with periodical medium replacement. The process produced lactate steadily at about 1.3 g l(-1)h(-1) when the replacement medium contained at least 2 g l(-1) of yeast extract. The production, however, stopped after switching to a medium without yeast extract. Active lactic acid production by LDD appeared to require yeast extract above a certain critical level (<2 g l(-1)). 相似文献
11.
Extractive fermentation for lactic acid production 总被引:8,自引:0,他引:8
Lactic acid extractive fermentation was demonstrated using Alamine 336 in oleyl alcohol at acidic pH. The use of an efficient extraction system was possible through employment of the cell immobilization procedure. Process modeling was performed to relate the various process parameters such as flow rate, concentration, and pH. In experiments with 15% Alamine 336/oleyl alcohol, the bioreactor operation resulted in a higher productivity (12 g/L gel h) compared to that of a control fermentation (7 g/L gel h). Strategies for optimizing the extractive fermentation process were proposed considering both productivity and product recovery. 相似文献
12.
Continuous lactic acid fermentation using a plastic composite support biofilm reactor 总被引:2,自引:1,他引:2
J. Cotton A. Pometto J. Gvozdenovic-Jeremic 《Applied microbiology and biotechnology》2001,57(5-6):626-630
An immobilized-cell biofilm reactor was used for the continuous production of lactic acid by Lactobacillus casei subsp. rhamnosus (ATCC 11443). At Iowa State University, a unique plastic composite support (PCS) that stimulates biofilm formation has been developed. The optimized PCS blend for Lactobacillus contains 50% (wt/wt) agricultural products [35% (wt/wt) ground soy hulls, 5% (wt/wt) soy flour, 5% (wt/wt) yeast extract, 5% (wt/wt) dried bovine albumin, and mineral salts] and 50% (wt/wt) polypropylene (PP) produced by high-temperature extrusion. The PCS tubes have a wall thickness of 3.5 mm, outer diameter of 10.5 mm, and were cut into 10-cm lengths. Six PCS tubes, three rows of two parallel tubes, were bound in a grid fashion to the agitator shaft of a 1.2-1 vessel for a New Brunswick Bioflo 3000 fermentor. PCS stimulates biofilm formation, supplies nutrients to attached and suspended cells, and increases lactic acid production. Biofilm thickness on the PCS tubes was controlled by the agitation speed. The PCS biofilm reactor and PP control reactor achieved optimal average production rates of 9.0 and 5.8 g l(-1) h(-1), respectively, at 0.4 h(-1) dilution rate and 125-rpm agitation with yields of approximately 70%. 相似文献
13.
Heteropolysaccharides from lactic acid bacteria 总被引:35,自引:0,他引:35
Microbial exopolysaccharides are biothickeners that can be added to a wide variety of food products, where they serve as viscosifying, stabilizing, emulsifying or gelling agents. Numerous exopolysaccharides with different composition, size and structure are synthesized by lactic acid bacteria. The heteropolysaccharides from both mesophilic and thermophilic lactic acid bacteria have received renewed interest recently. Structural analysis combined with rheological studies revealed that there is considerable variation among the different exopolysaccharides; some of them exhibit remarkable thickening and shear-thinning properties and display high intrinsic viscosities. Hence, several slime-producing lactic acid bacterium strains and their biopolymers have interesting functional and technological properties, which may be exploited towards different products, in particular, natural fermented milks. However, information on the biosynthesis, molecular organization and fermentation conditions is rather scarce, and the kinetics of exopolysaccharide formation are poorly described. Moreover, the production of exopolysaccharides is low and often unstable, and their downstream processing is difficult. This review particularly deals with microbiological, biochemical and technological aspects of heteropolysaccharides from, and their production by, lactic acid bacteria. The chemical composition and structure, the biosynthesis, genetics and molecular organization, the nutritional and physiological aspects, the process technology, and both food additive and in situ applications (in particular in yogurt) of heterotype exopolysaccharides from lactic acid bacteria are described. Where appropriate, suggestions are made for strain improvement, enhanced productivities and advanced modification and production processes (involving enzyme and/or fermentation technology) that may contribute to the economic soundness of applications with this promising group of biomolecules. 相似文献
14.
Lactic acid bacteria (LAB) are found to occupy a variety of ecological niches including fermented foods as well as mucosal surfaces of humans and other vertebrates. This review is based on the genomic content of LAB that is responsible for the functional and ecological diversity of these bacteria. These genomes reveal an ongoing process of reductive evolution as the LAB have specialized to different nutritionally rich environments. Species-to-species variation in the number of pseudogenes as well as genes directing nutrient uptake and metabolism reflects the adaptation of LAB to food matrices and the gastrointestinal tract. Although a general trend of genome reduction was observed, certain niche-specific genes appear to be recently acquired and appear on plasmids or adjacent to prophages. Recent work has improved our understanding of the genomic content responsible for various phenotypes that continue to be discovered, as well as those that have been exploited by man for thousands of years. 相似文献
15.
Biopreservation by lactic acid bacteria 总被引:48,自引:0,他引:48
Michael E. Stiles 《Antonie van Leeuwenhoek》1996,70(2-4):331-345
Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a hidden fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.Abbreviations LAB
lactic acid bacteria
-
C
Carnobacterium
-
Lb
Lactobacillus
-
Lc
Lactococcus
-
Le
Leuconostoc
-
Ls
Listeria
-
P
Pediococcus 相似文献
16.
17.
18.
Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation 总被引:2,自引:0,他引:2
Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. 相似文献
19.
Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation 总被引:3,自引:0,他引:3
S H Hynes D M Kjarsgaard K C Thomas W M Ingledew 《Journal of industrial microbiology & biotechnology》1997,18(4):284-291
The antibiotic virginiamycin was investigated for its effects on growth and lactic acid production by seven strains of lactobacilli
during the alcoholic fermentation of wheat mash by yeast. The lowest concentration of virginiamycin tested (0.5 mg Lactrol
TMkg−1 mash), was effective against most of the lactic acid bacteria under study, but Lactobacillus plantarum was not significantly inhibited at this concentration. The use of virginiamycin prevented or reduced potential yield losses
of up to 11% of the produced ethanol due to the growth and metabolism of lactobacilli. However, when the same concentration
of virginiamycin was added to mash not inoculated with yeast, Lactobacillus rhamnosus and L. paracasei grew after an extensive lag of 48 h and L. plantarum grew after a similar lag even in the presence of 2 mg virginiamycin kg−1 mash. Results showed a variation in sensitivity to virginiamycin between the different strains tested and also a possible
reduction in effectiveness of virginiamycin over prolonged incubation in wheat mash, especially in the absence of yeast.
Received 05 August 1996/ Accepted in revised form 18 December 1996 相似文献
20.