首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942–2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981–2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.  相似文献   

2.
Changes in climate and in browsing pressure are expected to alter the abundance of tundra shrubs thereby influencing the composition and species richness of plant communities. We investigated the associations between browsing, tundra shrub canopies and their understory vegetation by utilizing a long‐term (10–13 seasons) experiment controlling reindeer and ptarmigan herbivory in the subarctic forest tundra ecotone in northwestern Fennoscandia. In this area, there has also been a consistent increase in the yearly thermal sum and precipitation during the study period. The cover of shrubs increased 2.8–7.8 fold in exclosures and these contrasted with browsed control areas creating a sharp gradient of canopy cover of tundra shrubs across a variety of vegetation types. Browsing exclusions caused significant shifts in more productive vegetation types, whereas little or no shift occurred in low‐productive tundra communities. The increased deciduous shrub cover was associated with significant losses of understory plant species and shifts in functional composition, the latter being clearest in the most productive plant community types. The total cover of understory vegetation decreased along with increasing shrub cover, while the cover of litter showed the opposite response. The cover of cryptogams decreased along with increasing shrub cover, while the cover of forbs was favoured by a shrub cover. Increasing shrub cover decreased species richness of understory vegetation, which was mainly due to the decrease in the cryptogam species. The effects were consistent across different types of forest tundra vegetation indicating that shrub increase may have broad impacts on arctic vegetation diversity. Deciduous shrub cover is strongly regulated by reindeer browsing pressure and altered browsing pressure may result in a profound shrub expansion over the next one or two decades. Results suggest that the impact of an increase in shrubs on tundra plant richness is strong and browsing pressure effectively counteracts the effects of climate warming‐driven shrub expansion and hence maintains species richness.  相似文献   

3.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

4.
Recent Pan-Arctic shrub expansion has been interpreted as a response to a warmer climate. However, herbivores can also influence the abundance of shrubs in arctic ecosystems. We addressed these alternative explanations by following the changes in plant community composition during the last 10 years in permanent plots inside and outside exclosures with different mesh sizes that exclude either only reindeer or all mammalian herbivores including voles and lemmings. The exclosures were replicated at three forest and tundra sites at four different locations along a climatic gradient (oceanic to continental) in northern Fennoscandia. Since the last 10 years have been exceptionally warm, we could study how warming has influenced the vegetation in different grazing treatments. Our results show that the abundance of the dominant shrub, Betula nana , has increased during the last decade, but that the increase was more pronounced when herbivores were excluded. Reindeer have the largest effect on shrubs in tundra, while voles and lemmings have a larger effect in the forest. The positive relationship between annual mean temperature and shrub growth in the absence of herbivores and the lack of relationships in grazed controls is another indication that shrub abundance is controlled by an interaction between herbivores and climate. In addition to their effects on taller shrubs (>0.3 m), reindeer reduced the abundance of lichens, whereas microtine rodents reduced the abundance of dwarf shrubs (<0.3 m) and mosses. In contrast to short-term responses, competitive interactions between dwarf shrubs and lichens were evident in the long term. These results show that herbivores have to be considered in order to understand how a changing climate will influence tundra ecosystems.  相似文献   

5.
Many arid and semi‐arid landscapes around the world are affected by a shift from grassland to shrubland vegetation, presumably induced by climate warming, increasing atmospheric CO2 concentrations, and/or changing land use. This major change in vegetation cover is likely sustained by positive feedbacks with the physical environment. Recent research has focused on a feedback with microclimate, whereby cold intolerant shrubs increase the minimum nocturnal temperatures in their surroundings. Despite the rich literature on the impact of land cover change on local climate conditions, changes in microclimate resulting from shrub expansion into desert grasslands have remained poorly investigated. It is unclear to what extent such a feedback can affect the maximum extent of shrub expansion and the configuration of a stable encroachment front. Here, we focus on the case of the northern Chihuahuan desert, where creosotebush (Larrea tridentata) has been replacing grasslands over the past 100–150 years. We use a process‐based coupled atmosphere‐vegetation model to investigate the role of this feedback in sustaining shrub encroachment in the region. Simulations indicate that the feedback allows juvenile shrubs to establish in the grassland during average years and, once established, reduce their vulnerability to freeze‐induced mortality by creating a warmer microclimate. Such a feedback is crucial in extreme cold winters as it may reduce shrub mortality. We identify the existence of a critical zone in the surroundings of the encroachment front, in which vegetation dynamics are bistable: in this zone, vegetation can be stable both as grassland and as shrubland. The existence of these alternative stable states explains why in most cases the shift from grass to shrub cover is found to be abrupt and often difficult to revert.  相似文献   

6.
Strong evidence for a pan-Arctic expansion of upright shrubs comes from analysis of satellite imagery, historical photographs, vegetation plots, and growth rings. However, there are still uncertainties related to local-scale patterns of shrub growth, resulting interactions among vegetation functional groups, and the relative roles of disturbance and climate as drivers of observed change. Here, we present evidence that widespread and rapid shrub expansion and lichen declines over a 15,000 km2 area of the western Canadian Arctic have been driven by regional increases in temperature. Using 30 m resolution Landsat satellite imagery and high resolution repeat color-infrared aerial photographs, we show that 85% of the land surface has a positive 1985–2011 trend (P < 0.05) in NDVI, making this one of the most intensely greening regions in the Arctic. Strong positive trends (>0.03 NDVI/decade) occurred consistently across all landscape positions and most vegetation types. Comparison of 208, 1:2,000 scale vertical air photo pairs from 1980 and 2013 clearly shows that this greening was driven by increased canopy cover of erect dwarf and tall shrubs, with declines in terricolous lichen cover. Disturbances caused by wildfires, exploratory gas wells, and drained lakes all produced strong, yet localized increases in NDVI due to shrub growth. Our analysis also shows that a 4°C winter temperature increase over the past 30 years, leading to warmer soils and enhanced nutrient mineralization provides the best explanation for observed vegetation change. These observations thus provide early corroboration for modeling studies predicting large-scale vegetation shifts in low-Arctic ecosystems from climate change.  相似文献   

7.
Dwarf shrubs are a dominant plant type across many regions of the Earth and have hence a large impact on carbon and nutrient cycling rates. Climate change impacts on dwarf shrubs have been extensively studied in the Northern Hemisphere, and there appears to be large variability in response between ecosystem types and regions. In the Southern Hemisphere, less data are available despite dwarf shrub vegetation being a dominant feature of southern South America and mountainous regions of the Southern Hemisphere. Here, we present the response of an Empetrum rubrum dwarf shrub and a Poa grass community to 12 years of experimental climate manipulation achieved using open top chambers on the Falkland Islands, a cold temperate island group in the South Atlantic. The dwarf shrub and grass vegetation did not change significantly in cover, biomass or species richness over the 12 years period in response to climate warming scenarios of up to 1°C reflecting annual warming levels predicted in this region for the coming decades. The soil microarthropod community, however, responded with declines in abundance (37%) under warming conditions in the grass community, but no such changes were observed in the dwarf shrub community. Overall, our data indicate that dwarf shrub communities are resistant to the levels of climate warming predicted over the coming decades in the southern South America region and will, therefore, remain a dominant driver of local ecosystem properties.  相似文献   

8.
Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above‐ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space‐for‐time’ approach to test the hypothesis that a shift from lower‐productivity tundra heath to higher‐productivity deciduous shrub vegetation in the sub‐Arctic may lead to a loss of soil C that out‐weighs the increase in above‐ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m?2) and forest (2.04 ± 0.25 kg m?2) plots than at heath plots (7.03 ± 0.79 kg m?2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.  相似文献   

9.
Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error‐propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y?1. In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y?1 and climate velocity 1.3 m y?1. In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1–1.1 m y?1, indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south‐central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance.  相似文献   

10.
Growing evidence suggests that plant communities in the Low Arctic are responding to recent increases in air temperature. Changes to vegetation, particularly shifts in the abundance of upright shrubs, can influence surface energy balance (albedo), sensible and latent heat flux (evapotranspiration), snow conditions, and the ground thermal regime. Understanding fine-scale variability in vegetation across the shrub tundra ecotone is therefore essential as a monitoring baseline. In this article, we use object-based classifications of airphotos to examine changes in vegetation characteristics (cover and patch size) across a latitudinal gradient in the Mackenzie Delta uplands. This area is frequently mapped as homogenous vegetation, but it exhibits fine-scale variability in cover and patch size. Our results show that the total area and size of individual patches of shrub tundra decrease with increasing latitude. The gradual nature of this transition and its correlation with latitudinal variation in temperature suggests that the position of the shrub ecotone will be sensitive to continued warming. The impacts of vegetation structure on ecological processes make improved understanding of this heterogeneity critical to biophysical models of Low Arctic ecosystems.  相似文献   

11.
The nature of spatial transitions in the Arctic   总被引:3,自引:0,他引:3  
Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change. Location Arctic tundra ecosystems of the North Slope of Alaska and the tundra‐forest region of the Seward Peninsula, Alaska Methods We synthesize information from numerous studies on tundra and treeline ecosystems in an effort to document the spatial changes that occur across four arctic transitions. These transitions are: (i) the transition between High‐Arctic and Low‐Arctic systems, (ii) the transition between moist non‐acidic tundra (MNT) and moist acidic tundra (MAT, also referred to as tussock tundra), (iii) the transition between tussock tundra and shrub tundra, (iv) the transition between tundra and forested systems. By documenting the nature of these spatial transitions, in terms of their environmental controls and vegetation patterns, we develop a conceptual model of temporal dynamics of arctic ecotones in response to environmental change. Results Our observations suggest that each transition is sensitive to a unique combination of controlling factors. The transition between High and Low Arctic is sensitive primarily to climate, whereas the MNT/MAT transition is also controlled by soil parent material, permafrost and hydrology. The tussock/shrub tundra transition appears to be responsive to several factors, including climate, topography and hydrology. Finally, the tundra/forest boundary responds primarily to climate and to climatically associated changes in permafrost. There were also important differences in the demography and distribution of the dominant plant species across the four vegetation transitions. The shrubs that characterize the tussock/shrub transition can achieve dominance potentially within a decade, whereas spruce trees often require several decades to centuries to achieve dominance within tundra, and Sphagnum moss colonization of non‐acidic sites at the MNT/MAT boundary may require centuries to millennia of soil development. Main conclusions We suggest that vegetation will respond most rapidly to climatic change when (i) the vegetation transition correlates more strongly with climate than with other environmental variables, (ii) dominant species exhibit gradual changes in abundance across spatial transitions, and/or (iii) the dominant species have demographic properties that allow rapid increases in abundance following climatic shifts. All three of these properties characterize the transition between tussock tundra and low shrub tundra. It is therefore not surprising that of the four transitions studied this is the one that appears to be responding most rapidly to climatic warming.  相似文献   

12.
Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation recovery from one such natural event and multiple experimental simulations in the sub-Arctic using remote sensing, handheld passive proximal sensors and ground surveys.Normalized difference vegetation index (NDVI) recovered fast (2 years), from the 26% decline following one natural extreme winter warming event. Recovery was associated with declines in dead Empetrum nigrum (dominant dwarf shrub) from ground surveys. However, E. nigrum healthy leaf NDVI was also reduced (16%) following this winter warming event in experimental plots (both control and treatments), suggesting that non-obvious plant damage (i.e., physiological stress) had occurred in addition to the dead E. nigrum shoots that was considered responsible for the regional 26% NDVI decline. Plot and leaf level NDVI provided useful additional information that could not be obtained from vegetation surveys and regional remote sensing (MODIS) alone.The major damage of an extreme winter warming event appears to be relatively transitory. However, potential knock-on effects on higher trophic levels (e.g., rodents, reindeer, and bear) could be unpredictable and large. Repeated warming events year after year, which can be expected under winter climate warming, could result in damage that may take much longer to recover.  相似文献   

13.
陈黔  李晓松  修晓敏  杨广斌 《生态学报》2019,39(11):4056-4069
相较于降雨充沛的南方,中国北方沙地植被呈现覆盖整体偏低、空间异质性强的特点。灌木作为该区域的优势植被,对于风沙固定、食品/木材供给起着极为重要的作用。针对当前大尺度、中高分辨率干旱地区灌木覆盖度遥感产品缺失的现状,研究提出了一套通过Collect Earth样本收集器进行样本采集、利用Google Earth Engine遥感云平台的数据与计算优势开展大尺度灌木覆盖度估算的方法,并选取中国北方四大沙地之一的毛乌素沙地开展了示范应用。研究结果表明:(1)Collect Earth样本收集器可以有效地获取地面灌木覆盖度样本数据集,可以将灌木与高大乔木与草本植被进行有效区分,为灌木覆盖度估算样本集的建立打下了基础;(2)利用Landsat数据与其他辅助数据,机器学习算法可以较好地实现灌木覆盖度的估算,CART模型确定性系数R~2为0.73,均方根误差(Root Mean Square Error, RMSE)为13.66%,预测精度(Estimated Accuracy, EA)为61.8%,SVM模型R~2为0.72,RMSE为13.73%,EA为61.6%;(3)提出的基于GEE的灌木覆盖度估算体系可为我国乃至全球尺度干旱地区沙地灌木覆盖度信息提取提供有效支撑,具有较大的应用潜力。  相似文献   

14.
Local observations, repeat photos, and broad-scale remote sensing suggest that tall shrubs are becoming an increasingly dominant component of Low Arctic ecosystems. This shift has the potential to alter the surface energy balance through changes to the surface albedo, snow accumulation and melt, and ground thermal regimes. However, to date there have been few quantitative estimates of the rate of tall shrub expansion. We used soft copy stereo visualization of air photos to map fine-scale changes in tall shrub tundra and green alder density in the upland tundra north of Inuvik, NT between 1972 and 2004. We also used 2004 photos to map tall shrub tundra in areas affected by fires that occurred between 1960 and 1968. To assess the potential impact of vegetation change on microclimate, we used pyranometers to measure albedo and net solar radiation, thermistors attached to data loggers to record ground temperatures, and field surveys to record winter snow conditions in three common vegetation types. Fine-scale mapping shows that green alder stem density has increased by 68% (±24.1) since 1972. Average tall shrub tundra cover has also increased by 15% (±3.6) since 1972. Historical tundra fires had the highest proportion of tall shrub cover of all areas mapped using 2004 photos, ranging from 92 to 99%. Based on these results, we suggest that predicted increases in the size and frequency of tundra fire are likely to drive rapid shrub proliferation in the Low Arctic. Shrub-dominated sites have decreased albedo, increased net solar radiation, deeper snow pack, and elevated near-surface ground temperatures, indicating that continued increases in shrub cover will affect regional climate, hydrology, permafrost temperatures, and terrain stability.  相似文献   

15.
Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next‐generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change.  相似文献   

16.
Aim Feedbacks between climate warming and fire have the potential to alter Arctic and sub‐Arctic vegetation. In this paper we assess the effects and interactions of temperature and wildfire on plant communities across the transition between the Arctic and sub‐Arctic. Location Mackenzie Delta region, Northwest Territories, Canada. Methods We sampled air temperatures, green alder (Alnus viridis ssp. fruticosa) cover, growth, reproduction and age distributions, and overall plant community composition on burned and unburned sites across a latitudinal gradient. Results Mean summer temperature across the study area decreased by 3 °C per degree of increasing latitude (6 °C across the study area). In the northern part of the study area, where seed viability was low, alder was less dominant than at southern sites where seed viability was high. The age structure of alder populations across the temperature gradient was highly variable, except in the northern part of the forest–tundra transition, where populations were dominated by young individuals. Alder growth and reproduction were significantly greater on burned sites (38–51 years following fire) than on unburned sites. North to south across the temperature gradient, vegetation changed from a community dominated by dwarf shrubs and fruticose lichens to one characterized by black spruce (Picea mariana), alder and willows (Salix spp.). Regardless of the position along the temperature gradient, burned sites were dominated by tall shrubs. Main conclusions Temperature limitation of alder abundance and repro‐duction, combined with evidence of recent recruitment on unburned sites, indicates that alder is likely to respond to increased temperature. Elevated alder growth and reproduction on burned sites shows that wildfire also has an important influence on alder population dynamics. The magnitude of alder’s response to fire, combined with observations that burns at the southern margin of the low Arctic are shrub dominated, suggest that increases in the frequency of wildfire have the potential to alter northern vegetation on decadal scales. By creating new seedbeds, fire provides opportunities for colonization that may facilitate the northward movement of tall shrubs. Feedbacks between the global climate system and low Arctic vegetation make understanding the long‐term impact of increasing fire frequency critical to predicting the response of northern ecosystems to global change.  相似文献   

17.
黑河上游天涝池流域灌丛地上生物量空间分布   总被引:1,自引:0,他引:1  
祁连山自然保护区是河西地区重要的水源涵养区,而灌丛作为祁连山主要植被类型之一,对该区水源涵养功能具有举足轻重的作用。以黑河上游天涝池流域灌丛为研究对象,基于野外调查结合研究区机载Li DAR(Light Detection And Ranging)数据和Geoeye-1影像,研究灌丛地上生物量的空间分布。结果表明:样方生物量与易测因子(平均丛高和样方盖度)呈幂函数关系;机载Li DAR数据能够较精确地反演灌丛平均高度以及样方盖度;利用其反演数据获得研究区灌丛地上总生物量为141 t;单位面积最大地上生物量为691.8 g/m2;在海拔3300—3400 m高度带灌丛地上生物量最大,为40.4 t;在海拔2655—3300 m高度带,随着海拔的升高灌丛地上总生物量在增加;在海拔3400—3750 m高度带,随着海拔的升高而灌丛地上总生物量逐渐减少。  相似文献   

18.
In deserts and semi-deserts such as in the Irano-Turanian region in northern Iran, forest vegetation is scarce but shrubs are dominant. For this floristic province, placed in a biodiversity hotspot with a cold and dry climate, we provide the first climate-growth study on shrubs. From stems of three wide-spread shrubs (Astragalus, Rhamnus and Ephedra species) annual rings were identified and their widths measured.On average, around 40-year long annual-ring series per stem were obtained, cross-dated and related to meteorological variables. Astragalus and Rhamnus reflected a clear regional climate signal in their ring widths whereas Ephedra showed an only weak association with climate variables. While above-average air humidity in combination with low temperatures in spring and summer favored shrub growth, precipitation had surprisingly only a weak effect on growth. From the abundance of fog events in this area, we concluded that the extreme moisture dependency of the shrubs before and throughout the growing season may have been relieved by the uptake of fog drip through the foliage.As projected by climate models, the deficit in humidity will intensify and temperature will continue to rise in this region. So, the ability of the Irano-Turanian endemic shrubs to infiltrate into neighboring regions could become limited and their current distribution range may be confined to higher elevations which provide a moister and cooler environment.  相似文献   

19.
基于实地考察、文献资料和标本数据,借助GIS技术构建桂西黔南生物多样性保护优先区的39种国家重点保护植物空间地理分布格局,结合30m空间分辨率遥感影像解译的植被与地表覆盖数据,研究该优先区内的国家重点保护物种的生境与植被类型的关系及保护现状,并就优先区国家重点保护植物的地理分布格局分析优先区以外的保护空缺。此外,对优先区近二十年来的植被与地表覆盖特征的时空变化进行分析研究,结果优先区的人居用地、湿地(包括水库)面积分别增加67.75km2和371.11km2,森林面积相对稳定,灌丛和草丛面积分别减少230.69km2和174.70km2。该地区的国家重点保护植物正面临着生境退化和丧失的威胁。在此基础上对国家重点保护植物今后的保护及监测提出了对策和建议,为生物多样性研究、保护空缺分析、植被时空变化研究以及动态监测等方面的工作提供借鉴。  相似文献   

20.
Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White‐crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge‐dominated tussock tundra where shrub height does not exceed 20 cm, whereas White‐crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy‐dwelling arthropod availability (i.e. small flies and spiders) but lower ground‐dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White‐crowned sparrow habitat range and a 20–60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine‐scale habitat characteristics that are critical to accurately predicting future habitat extent for many wildlife species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号