首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aryl hydrocarbon receptor-associated protein 9, ARA9 (also known as XAP2 or AIP1), is a chaperone that is found in complexes with certain xenobiotic receptors, such as the aryl hydrocarbon receptor (AHR) and the peroxisome proliferator-activated receptor alpha (PPARalpha). In an effort to better understand the physiological role of ARA9 outside of its role in xenobiotic signal transduction, we generated a null allele at the Ara9 locus in mice. Mice with a homozygous deletion of this gene die at various time points throughout embryonic development. Embryonic lethality is accompanied by decreased blood flow to head and limbs, as well as a range of heart deformations, including double outlet right ventricle, ventricular-septal defects, and pericardial edema. The early cardiovascular defects observed in Ara9-null mice suggest an essential role for the ARA9 protein in cardiac development. The observation that the developmental aberrations in Ara9-null mice are distinct from those observed for disrupted alleles at Ahr or Pparalpha indicates that the role of ARA9 in cardiac development is independent of its interactions with its known xenobiotic receptor partners.  相似文献   

3.
The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.  相似文献   

4.
The aryl hydrocarbon receptor (AHR) plays an essential role in the toxic response to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), in the adaptive up-regulation of xenobiotic metabolizing enzymes, and in hepatic vascular development. In our model of AHR signaling, the receptor is found in a cytosolic complex with a number of molecular chaperones, including Hsp90, p23, and the aryl hydrocarbon receptor-interacting protein (AIP), also known as ARA9 and XAP2. To understand the role of AIP in adaptive and toxic aspects of AHR signaling, we generated a conditional mouse model where the Aip locus can be deleted in hepatocytes. Using this model, we demonstrate two important roles for the AIP protein in AHR biology. (i) The expression of AIP in hepatocytes is essential to maintain high levels of functional cytosolic AHR protein in the mammalian liver. (ii) Expression of the AIP protein is essential for dioxin-induced hepatotoxicity. Interestingly, classical AHR-driven genes show differential dependence on AIP expression. The Cyp1b1 and Ahrr genes require AIP expression for normal up-regulation by dioxin, whereas Cyp1a1 and Cyp1a2 do not. This differential dependence on AIP provides evidence that the mammalian genome contains more than one class of AHR-responsive genes and suggests that a search for AIP-dependent, AHR-responsive genes may guide us to the targets of the dioxin-induced hepatotoxicity.  相似文献   

5.
The mechanism of signal transduction by steroid receptor proteins is complex and not yet understood. We describe here a facile genetic strategy for dissection of the rat glucocorticoid receptor "signaling domain," a region of the protein that binds and transduces the hormonal signal. We found that the characteristics of signal transduction by the receptor expressed in yeast were similar to those of endogenous receptors in mammalian cells. Interestingly, the rank order of particular ligands differed between species with respect to receptor binding and biological efficacy. This suggests that factors in addition to the receptor alone must determine or influence ligand efficacy in vivo. To obtain a collection of receptors with distinct defects in signal transduction, we screened in yeast an extensive series of random point mutations introduced in that region in vitro. Three phenotypic classes were obtained: one group failed to bind hormone, a second displayed altered ligand specificity, and a third bound hormone but lacked regulatory activity. Our results demonstrate that analysis of glucocorticoid receptor action in yeast provides a general approach for analyzing the mechanism of signaling by the nuclear receptor family and may facilitate identification of non-receptor factors that participate in this process.  相似文献   

6.
Heitzer MD  DeFranco DB 《Steroids》2007,72(2):218-220
Growth factors and cytokines mediate communication between the epithelial and stromal compartments of the prostate. In prostate cancer (PCa), changes in the spatial arrangements of the two compartments (i.e. basement membrane invasion), DNA mutations, or cellular dedifferentiation (i.e. myofibroblasts) leads to significant changes in gene expression within both compartments. This results in altered cytokine and/or growth factor signaling in PCa. Recently, a stromal-specific androgen receptor (AR) coactivator, Hic-5/ARA55, has been identified that may play a role in regulating expression of the growth factor and/or cytokine expression in the prostate. Specifically, Hic-5/ARA55 expression influences androgen-induced keratinocyte growth factor (KGF) expression in WPMY-1 prostate stromal cells. Because Hic-5/ARA55's expression is also altered in PCa, it may play a role in the differential cellular signaling events that occur during tumor progression.  相似文献   

7.
ARA267-α is a newly identified androgen receptor coactivator. In order to further elucidate its precise role in cells, using the ARA267-α fragment containing four PHD and one SET conserved domains as bait we revealed an ARA267-α-PHD-SET-interacting protein, death receptor-6 (DR6), in the yeast two-hybrid screening. DR6 is the member of TNF receptor family and has a death domain in its intracellular cytoplasmic portion (DR6cp) to mediate the cell apoptosis. The interaction between ARA267-α-PHD-SET and DR6cp was confirmed in vitro and in vivo. Our finding implied that androgen signaling pathway might cross talk with apoptosis signaling pathway through the interaction between ARA267-α and DR6.  相似文献   

8.
9.
ARA267-α is a newly identified androgen receptor coactivator. In order to further elucidate its precise role in cells, using the ARA267-α fragment containing four PHD and one SET conserved domains as bait we revealed an ARA267-α-PHD-SET-interacting protein, death receptor-6 (DR6), in the yeast two-hybrid screening. DR6 is the member of TNF receptor family and has a death domain in its intracellular cytoplasmic portion (DR6cp) to mediate the cell apoptosis. The interaction between ARA267-α-PHD-SET and DR6cp was confirmedin vitro andin vivo. Our finding implied that androgen signaling pathway might cross talk with apoptosis signaling pathway through the interaction between ARA267-α and DR6.  相似文献   

10.
11.
The Ah receptor nuclear translocator (ARNT) is the dimeric partner of hypoxia-inducible factors and thus plays a pivotal role in cellular adaptation to low oxygen environments. ARNT is also a dimeric partner for the Ah receptor (AHR), and this complex is essential in regulating the adaptive metabolic response to polycyclic aromatic hydrocarbons. Because of the essential role of ARNT in hypoxia-driven developmental events, it has been difficult to study the physiological significance of AHR.ARNT heterodimers in vivo. To address this issue, we developed a hypomorphic Arnt allele that displayed normal development and allowed the examination of the role of ARNT in AHR biology. In this regard, the AHR is also known to mediate two additional biological processes: the toxicological response to compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and the developmental closure of a fetal vascular structure known as the ductus venosus. Although the mechanism of the adaptive pathway has been well described, the mechanism of AHR-mediated signal transduction in the toxic and developmental pathways is not well understood. Liver perfusion studies demonstrated that ARNT hypomorphs have a patent ductus venosus, identical to that observed in the Ahr null mice. Parallel dioxin toxicity studies demonstrated that the ARNT hypomorphs exhibited resistance to the end points of dioxin exposure. Moreover, we observed that toxicity could be segregated from the classical adaptive responses such as P4501A induction. Taken in sum, these experiments demonstrate that ARNT is an essential component of AHR developmental signaling and shed light on the mechanism of dioxin toxicity.  相似文献   

12.
13.
14.
15.
16.
Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal; and 3) revealing the architecture of a signaling system by organizing signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis has led to many new hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architecture of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which can be readily translated into computable knowledge in the form of rules regarding the yeast signaling system, such as “if genes involved in the MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed.”  相似文献   

17.
本研究采用酵母双杂交系统探寻与神经病靶标酯酶(NTE)调控结构域相互作用的蛋白因子,揭示与NTE信号转导相关的可能机制。通过构建含有NTE调控结构域的诱饵蛋白载体筛选胎脑文库,并将筛选得到的阳性克隆在酵母中进行了验证,随后在哺乳动物细胞中表达了该蛋白。生物信息学分析显示:该阳性克隆为前列腺素受体结合蛋白54(ARA54),具有泛素连接酶活性,提示细胞可能存在依赖于细胞周期的NTE活性调节机制,为阐明NTE生理功能创造了条件[动物学报51(5):840—844,2005]。  相似文献   

18.
In cardiac myocytes, growth responses depend on activation of G protein-coupled receptors interacting with Gq/11 protein subfamily members. Endothelin receptors of the ETA subtype belong to this receptor group inducing hypertrophic responses. To understand the role of ETA receptors and signal transduction proteins in modulating cell growth, we analyzed the pharmacological profile of this receptor, its level of expression together with those of Galpha subunits and the RGS2 protein in cardiomyoblasts differentiating into the cardiac phenotype. H9c2 rat cardiomyoblasts were grown in the presence of 10% fetal bovine serum (FBS) or 1% FBS plus all-trans-retinoic acid to induce the cardiac phenotype. The pharmacological properties of ETA receptors were investigated by competition-binding experiments, whereas the protein expression profile was analyzed by immunoblot and immunocytochemistry. The pharmacological profile of ETA receptors changed during differentiation of cardiomyoblasts into cardiomyocytes, and the amount of expressed receptor appeared to increase. Immunocytochemistry also showed a marked increase of receptor expression on cell membranes of differentiated cardiomyocytes. Among the other signaling proteins examined, both Galphaq/11 and RGS2 expression decreased in cells with the cardiac phenotype. Our results demonstrate that the expression of key proteins (ETA receptor, Galphaq/11, and RGS2) involved in signal transduction of hypertrophic stimuli is modulated during cell differentiation and correlates with the cardiac phenotype.  相似文献   

19.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), the principal viral oncoprotein and a member of the tumor necrosis factor receptor superfamily, is a constitutively active membrane signaling protein that regulates multiple signal transduction pathways via its C-terminal-activating region 1 (CTAR1) and CTAR2, and also the less-studied CTAR3. Because protein sumoylation among other posttranslational modifications may regulate many signaling pathways induced by LMP1, we investigated whether during EBV latency LMP1 regulates sumoylation processes that control cellular activation and cellular responses. By immunoprecipitation experiments, we show that LMP1 interacts with Ubc9, the single reported SUMO-conjugating enzyme. Requirements for LMP1-Ubc9 interactions include enzymatically active Ubc9: expression of inactive Ubc9 (Ubc9 C93S) inhibited the LMP1-Ubc9 interaction. LMP1 CTAR3, but not CTAR1 and CTAR2, participated in the LMP1-Ubc9 interaction, and amino acid sequences found in CTAR3, including the JAK-interacting motif, contributed to this interaction. Furthermore, LMP1 expression coincided with increased sumoylation of cellular proteins, and disruption of the Ubc9-LMP1 CTAR3 interaction almost completely abrogated LMP1-induced protein sumoylation, suggesting that this interaction promotes the sumoylation of downstream targets. Additional consequences of the disruption of the LMP1 CTAR3-Ubc9 interaction revealed effects on cellular migration, a hallmark of oncogenesis. Together, these data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling and leads to biological effects. We propose that LMP1, by interaction with Ubc9, modulates sumoylation processes, which regulate signal transduction pathways that affect phenotypic changes associated with oncogenesis.  相似文献   

20.
Interleukin-1 (IL-1) induces the internalization of its cognate receptor from the plasma membrane. However, it has remained elusive as to how this mechanism affects the IL-1-induced signal transduction. In this study, we used small-molecule inhibitors of receptor endocytosis to analyze the effects on IL-1-induced signal transduction pathways. We demonstrate that the inhibition of endocytosis down-modulates IL-1-induced NF-κB-dependent gene expression at a level downstream of nuclear translocation and DNA binding of NF-κB. Moreover, we report that the reduced NF-κB-dependent gene expression disrupts feedback inhibition loops terminating the activation of mitogen-activated protein kinases and down-regulating the expression of IL-1-induced mRNAs. Collectively, we show that the inhibition of endocytosis causes a dysregulation of IL-1-induced signal transduction and gene expression demonstrating an important role for receptor internalization in IL-1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号