首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of retinoids by embryonal carcinoma cells   总被引:4,自引:0,他引:4  
Several embryonal carcinoma (EC) cell lines were tested in culture for their ability to metabolize all-trans-[3H]retinol, all-trans-[3H]retinyl acetate, and all-trans-[3H]retinoic acid. There was little, if any, metabolism of all-trans-retinol to more polar compounds; we failed to detect conversion to acidic retinoids by reverse-phase high performance liquid chromatography and derivatization. We also did not observe [3H]retinoic acid when EC cells were incubated with [3H]retinyl acetate. Unlike the other retinoids, all-trans-[3H]retinoic acid, even at micromolar levels, was almost totally modified by cells from several EC lines within 24 h. Most of the labeled products were secreted into the medium. Some EC lines metabolized retinoic acid constitutively, whereas others had an inducible enzyme system. A differentiation-defective line, which contains little or no cellular retinoic acid-binding protein activity, metabolized retinoic acid poorly, even after exposure to inducers. At least eight retinoic acid metabolites were generated; many contain hydroxyl residues. Our data lead us to propose that retinol does not induce differentiation of EC cells in vitro via conversion to retinoic acid. Also, the relatively rapid metabolism of retinoic acid by EC cells suggests either that the induction of differentiation need involve only a transient exposure to this retinoid or that one or more of the retinoic acid metabolites can also promote differentiation.  相似文献   

2.
In these studies, we wished to determine the effect of teratogenic doses of retinoic acid on the expression of cellular retinoic acid binding protein I (CRABP-I) mRNA, cellular retinoic acid binding protein II (CRABP-II) mRNA, cellular retinol binding protein I (CRBP-I) mRNA, and cellular retinol binding protein II (CRBP-II) mRNA in mouse conceptuses. Levels of CRABP-II mRNA and CRBP-I mRNA were modestly elevated (2.5-fold and 1.5-fold, respectively) in 9-day gestation conceptuses following treatment of dams with 100 mg/kg b.w. of retinoic acid. These levels were elevated by 6 hr following treatment and remained elevated until 48 and 24 hr, respectively. Two other retinoids, etretinate and retinoyl beta-glucuronide, also moderately elevated CRABP-II mRNA and CRBP-I mRNA levels in conceptuses. In contrast, the levels of CRABP-I mRNA in the conceptuses remained unaffected by treatment with any of these three retinoids. These results demonstrate that conceptuses have a limited capacity to elevate the cellular retinoid binding proteins mRNA levels and presumably the synthesis of their respective proteins in response to high, teratogenic doses of retinoic acid. As a result, an excess of free retinoic acid becomes available to the nuclear retinoic acid receptors, which may lead to inappropriate gene expression and eventual maldevelopment.  相似文献   

3.
In this study we examined the effects of retinol and retinoic acid on steroid production in MA-10 mouse Leydig tumor cells. Results showed that both retinol and retinoic acid greatly increased progesterone production in this cloned cell line. The stimulatory effect of retinoids is not inhibited by cycloheximide suggesting that de novo protein synthesis is not required. The presence of the retinoid binding proteins CRBP and CRABP could not be detected in MA-10 Leydig cell cytosol indicating that the stimulatory action of retinoids on progesterone production is not mediated through these cellular binding proteins. Both previous and present findings suggest that retinoids play an important role in the regulation of Leydig cell steroidogenesis and that MA-10 Leydig tumor cells may represent an ideal in vitro cell system to study the mechanism of action of retinoids in Leydig cell steroidogenesis.  相似文献   

4.
When F9 murine-embryonal-carcinoma cells were incubated with all-trans-[3H]retinoic acid, approximately 10% of the tritium label taken up by the cells was recovered in the nuclei. Sonication or DNase I digestion followed by extraction with 0.6 M NaCl released 20-40% of the nuclear-associated retinoic acid. Analysis of these extracts showed that retinoic acid was bound to protein sedimenting at 4 S. This nuclear retinoic-acid-binding component bound all-trans- and 13-cis-retinoic acid with comparable affinity whereas retinol competed less efficiently for binding. These results suggest that F9 embryonal-carcinoma cells contain a nuclear binding protein for retinoic acid that is distinct from the cellular retinoic-acid-binding protein.  相似文献   

5.
The main retinoids and some binding proteins and enzymes involved in retinol metabolism have been quantified in different types of rat liver cells. Hepatic perisinusoidal stellate cells contained 28-34 nmol of retinoids/10(6) cells, and parenchymal liver cells contained 0.5-0.8 nmol of retinoids/10(6) cells, suggesting that as much as 80% of more of total liver retinoids might be stored in stellate cells with the rest stored in parenchymal cells. Isolated endothelial cells and Kupffer cells contained very low levels of retinoids. More than 98% of the retinoids recovered in stellate cells were retinyl esters. Isolated parenchymal and stellate cell preparations both contained considerable retinyl palmitate hydrolase and acyl-CoA:retinol acyltransferase activities. Parenchymal cells accounted for about 75-80% of the total hepatic content of these two enzyme activities, with the rest located in stellate cells. On a cell protein basis, the concentrations of both of these activities were much greater in stellate cells than in parenchymal cells. In contrast, cholesteryl oleate and triolein hydrolase activities were fairly evenly distributed in all types of liver cells. Large amounts of cellular retinol binding proteins were also found in parenchymal and stellate cells. Although parenchymal cells accounted for more than 90% of hepatic cellular retinol binding protein, the concentration of the protein in stellate cells (per unit protein) was 22 X greater than that in parenchymal cells. Stellate cells were also enriched in cellular retinoic acid binding protein. Thus, both parenchymal and stellate cells contain substantial amounts of retinoids and of the enzymes and intracellular binding proteins involved in retinol metabolism. Stellate cells are particularly enriched in these several components.  相似文献   

6.
The activity of cAMP-dependent protein kinase and cAMP binding activity were studied during the differentiation of ST 13 murine preadipocytes into adipocytes. We found that both activities were marginally detectable in preadipose cells and increased remarkably when the cells were induced to differentiate, preceding by several days the morphological adipose conversion. The increased cAMP-dependent protein kinase was identified as type II enzyme by means of DEAE-Sephacel chromatography and by photoaffinity labeling with 8-azido[3H]cAMP. We further showed that the increase of protein kinase activity was specific to cell differentiation with the aid of modulators of the adipose conversion (insulin, fetal bovine serum, retinoic acid and 5-bromodeoxy-uridine). We propose that the increased expression of type II cAMP-dependent protein kinase would be a biochemical index of differentiation in ST 13 preadipocytes.  相似文献   

7.
The order of potency of retinoids as inhibitors of A23187-induced production of leukotriene B4 (LTB4) in human polymorphonuclear leukocytes (PMN) was retinoic acid greater than retinal greater than retinol. However, the conversion of exogenous arachidonate (AA) to LTB4 by PMN homogenates was inhibited in the rank order retinol greater than retinal much greater than retinoic acid. The agreement between active concentrations of retinol in these two systems is consistent with this compound acting directly to inhibit AA metabolism: this is not so for the other retinoids. The order of potency for inhibition of phorbol dibutyrate (PDBu)-stimulated superoxide (O-2) production in HL60 granulocytes was retinol greater than retinoic acid much greater than retinal (inactive); neither retinol nor retinal displaced [3H]PDBu from HL60 cells. We conclude that inhibition of LTB4 production by retinoic acid and retinal is neither through inhibition of AA metabolism nor through inhibition of protein kinase C.  相似文献   

8.
Growth of SCC-13 squamous carcinoma cultures in the presence of retinoids considerably reduced the expression of two differentiation markers, the cellular capability to form cross-linked envelopes, and the enzyme transglutaminase required for cross-linking. A limited survey of retinoids showed that all-trans retinoic acid, 13-cis retinoic acid, and arotinoid Ro 13-6298 were highly effective in the absence of hydrocortisone and were only slightly antagonized by its presence in the medium. In contrast, retinyl acetate, retinol, and retinol bound to its plasma binding protein were quite active in the absence of hydrocortisone but were essentially inactive in its presence. Dexamethasone was also highly effective in antagonizing the suppressive action of retinyl acetate on envelope formation, while the corticosteroid antagonists cortexolone and progesterone were inactive. These results suggest that there are separate pathways, which are differentially regulated by hydrocortisone, for either the metabolism or action of retinol and retinoic acid in SCC-13 cells.  相似文献   

9.
Solubility of retinoids in water   总被引:5,自引:0,他引:5  
Spectrophotometric and radioactive techniques were used to measure the water solubility of retinaldehyde, retinol (vitamin A), and retinoic acid under physiological conditions. Hydration decreases the molar extinction coefficient of these substances and shifts their absorption peak bathochromically (10 nm for retinal and approximately 1 nm for the rest). We find their solubility to be about 0.1 microM at room temperature, pH 7.3 (with experimental values being 0.11 microM for retinaldehyde, 0.06 microM for retinol, and 0.21 microM for retinoic acid). To prevent oxidative degradation of retinol, which is the most labile retinoid, our argon-saturated buffer solutions contained physiological levels of ascorbate or alpha-tocopherol. To the best of our knowledge, water solubility of these compounds has not yet been previously reported. Although the measured solubilities are relatively low, they are significant and may account for the movement of retinoids through the aqueous phase as observed by others during exchange with binding proteins and during intervesicular transfer in the absence of binding proteins. Diffusion of uncomplexed retinoids through the aqueous phase can be a major pathway for transport over subcellular distances.  相似文献   

10.
We have previously reported on the dependency of activated B lymphocytes for retinol. Here we confirm and extend these findings that cells deprived of retinol perish in cell culture within days, displaying neither signs of apoptosis nor of cell cycle arrest. Cell death can be prevented by physiological concentrations of retinol and retinal, but not by retinoic acid or three synthetic retinoic acid analogues. To exclude the possibility that retinoic acid is so rapidly degraded as to escape detection, we have tested its stability in intra- and extracellular compartments. Contrary to expectation, we find that retinoic acid persists for longer (t 1/2 3 d) in cultures than retinol (t 1/2 1 d). Furthermore, despite the use of sensitive trace-labeling techniques, we cannot detect retinoic acid or 3,4-didehydroretinoic acid among retinol metabolites. However, retinol is converted into several new retinoids, one of which has the ability to sustain B cell growth in the absence of an external source of retinol, supporting the notion of a second retinol pathway. We have also determined which of the known retinoid-binding proteins are expressed in B lymphoblastoid cells. According to results obtained with polymerase chain reaction-assisted mRNA detection, they transcribe the genes for cellular retinol- and cellular retinoic acid-binding proteins, for the nuclear retinoic acid receptors, RAR-alpha, -gamma, and RXR-alpha, but not RAR-beta. Our findings that B cells do not synthesize retinoic acid or respond to exogenous retinoic acid on the one hand, but on the other hand convert retinol to a novel bioactive form of retinol, suggest the existence of a second retinoid pathway, distinct from that of retinoic acids.  相似文献   

11.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.  相似文献   

12.
Adult rat Leydig cells, purified by Percoll density gradient centrifugation, were used to determine the effect of retinol and retinoic acid on steroidogenesis. It was found that both retinoic acid and retinol stimulated testosterone production. Although retinol was less potent than retinoic acid, retinol had the greater efficacy. When these retinoids were tested in the presence of a maximal dose of LH, it was found that retinol inhibited LH-stimulated testosterone synthesis whereas retinoic acid had no similar effect. These results demonstrate for the first time that retinol and retinoic acid have a direct effect on Leydig cell steroidogenesis in culture suggesting that retinoids play a role in the maintenance and regulation of Leydig cell function.  相似文献   

13.
14.
15.
We have examined the effects of retinoids on growth of cultured human skin fibroblasts from four individuals. Retinoic acid and retinol both produce a dose-dependent inhibition of growth in the four strains examined; retinoic acid was more potent than retinol in this respect. The growth inhibitory effect of retinoic acid is characterized by a decrease in the exponential growth rate, which is reversible upon removal of retinoic acid from the growth medium; the final saturation density, however, is not modified by retinoic acid treatment. No alterations of cell morphology, viability, or adhesiveness to substratum are induced by the retinoid concentrations utilized. The inhibitory effect of 10−6 M retinoic acid on cell growth is not affected by the concentration of fetal calf serum (FCS) in the medium. In all four human fibroblast strains examined, specific binding of [3H]retinoic acid to cytosol is present as determined by sucrose-density gradient centrifugation. Despite the effects of retinol on fibroblast growth, no cytoplasmic binding of [3H]retinol could be demonstrated in these cells.  相似文献   

16.
Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis.  相似文献   

17.
18.
The cellular and structural properties and binding capabilities of a lipocalin expressed in the early neural plate of Xenopus laevis embryos and the adult choroid plexus have been investigated. It was found that this lipocalin, termed Xlcpl1, binds retinal at a nanomolar concentration, retinoic acid in the micromolar range, but does not show binding to retinol. Furthermore, this protein also binds D/L thyroxine. The Xlcpl1 cDNA was expressed in cell culture using the vaccinia virus expression system. In AtT20 cells, Xlcpl1 was secreted via the constitutive secretory pathway. We therefore assume that cpl1 binds retinaldehyde during the transport through the compartments of the secretory pathway that are considered to be the storage compartments of retinoids. Therefore, cpl1-expressing cells will secrete the precursors of active retinoids such as retinoic acid isomers. These retinoids may enter the cytosol by diffusion or receptor-controlled mechanisms, as has been shown for exogenously applied retinoids. Based on these data, it is suggested that cpl1 is an integral member of the retinoid signaling pathway and, therefore, it plays a key role in pattern formation in early embryonic development.  相似文献   

19.
A study was conducted to explore the relationship between the effects of vitamin A upon cartilage and the biological role of vitamin A in maintaining growth and life. Retinol, retinoic acid, alpha-retinoic acid, and ROB-7699 (a cyclopentyl analog of retinoic acid) were highly effective in promoting the lysis of the extracellular matrix of cartilage grown in organ culture in vitro. Retinoic acid and its two analogs were quantitatively more active than was retinol in bringing about lysis of matrix and release of proteoglycan into the culture medium. A bioassay was then conducted to determine the ability of each compound to promote growth of vitamin A-deficient rats. In contrast to their effects upon cartilage, retinoic acid and its two analogs were considerably less active quantitatively than retinol in promoting growth of vitamin A-deficient rats. Moreover, the three acids tested showed graded biological activity in the growth bioassay, with alpha-retinoic acid showing reduced bioactivity (approx. one-fourth that of retinoic acid) and ROB-7699 being virtually inactive. The lysis of cartilage produced by these compounds was presumably caused by release of lysosomal enzymes as a result of the membrane-labilizing effects of the compounds. Thus, these membrane effects of the vitamin A-related compounds are poorly correlated with their biological growth-promoting activity. The alpha-ionone analogs of retinol and retinoic acid were able to maintain good health and growth of vitamin A-deficient rats, although their quantitative activity was low. Rats fed alpha-retinyl acetate showed high liver stores of alpha-retinyl esters and low levels of serum retinol-binding protein (similar to the levels seen in retinoic acid-fed rats). The biological activity of the alpha-ionone analogs was apparently not due to contamination with or conversion to the normal beta-ionone compounds.  相似文献   

20.
Free retinoids suffer promiscuous metabolism in vitro. Diverse enzymes are expressed in several subcellular fractions that are capable of converting free retinol (retinol not sequestered with specific binding proteins) into retinal or retinoic acid. If this were to occur in vivo, regulating the temporal-spatial concentrations of functionally-active retinoids, such as RA (retinoic acid), would be enigmatic. In vivo, however, retinoids occur bound to high-affinity, high-specificity binding proteins, including cellular retinol-binding protein, type I (CRBP) and cellular retinoic acid-binding protein, type I (CRABP). These binding proteins, members of the superfamily of lipid binding proteins, are expressed in concentrations that exceed those of their ligands. Considerable data favor a model pathway of RA biosynthesis and metabolism consisting of enzymes that recognize CRBP (apo and holo) and holo-CRABP as substrates and/or affecters of activity. This would restrict retinoid access to enzymes that recognize the appropriate binding protein, imparting specificity to RA homeostasis; preventing, e.g. opportunistic RA synthesis by alcohol dehydrogenases with broad substrate tolerances. An NADP-dependent microsomal retinol dehydrogenase (RDH) catalyzes the first reaction in this pathway. RDH recognizes CRBP as substrate by the dual criteria of enzyme kinetics and chemical crosslinking. A cDNA of RDH has been cloned, expressed and characterized as a short-chain alchol dehydrogenase. Retinal generated in microsomes from holo-CRBP by RDH supports cytosolic RA synthesis by an NAD-dependent retinal dehydrogenase (RalDH). RalDH has been purified, characterized with respect to substrate specificity, and its cDNA has been cloned. CRABP is also important to modulating the steady-state concentrations of RA, through sequestering RA and facilitating its metabolism, because the complex CRABP/RA acts as a low Km substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号