首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.  相似文献   

2.
The fluorescence lifetime of fluorescent proteins is affected by the concentration of solutes in a medium, in inverse correlation with local refractive index. In this paper, we introduce the concept of using this dependence to probe cellular molecular environment and its transformation during cellular processes. We employ the fluorescence lifetime of Green Fluorescent Protein and tdTomato Fluorescent Protein expressed in cultured cells and probe the changes in the local molecular environment during the cell cycle progression. We report that the longest fluorescence lifetimes occurred during mitosis. Following the cell division, the fluorescence lifetimes of these proteins were rapidly shortened. Furthermore the fluorescence lifetime of tdTomato in the nucleoplasm gradually increased throughout the span of S-phase and remained constantly long until the end of interphase. We interpret the observed fluorescence lifetime changes to be derived from changes in concentration of macromolecular solutes in the cell interior throughout cell cycle progression.  相似文献   

3.
We report a highly specific fluorescence lifetime imaging microscopy (FLIM) method for monitoring epidermal growth factor receptor (EGFR) phosphorylation in cells based on fluorescence resonance energy transfer (FRET). EGFR phosphorylation was monitored using a green fluorescent protein (GFP)-tagged EGFR and Cy3-conjugated anti-phosphotyrosine antibodies. In this FRET-based imaging method, the information about phosphorylation is contained only in the (donor) GFP fluorescence lifetime and is independent of the antibody-derived (acceptor) fluorescence signal. A pixel-by-pixel reference lifetime of the donor GFP in the absence of FRET was acquired from the same cell after photobleaching of the acceptor. We show that this calibration, by acceptor photobleaching, works for the GFP-Cy3 donor-acceptor pair and allows the full quantitation of FRET efficiencies, and therefore the degree of exposed phosphotyrosines, at each pixel. The hallmark of EGFR stimulation is receptor dimerisation [1] [2] [3] [4] and concomitant activation of its intracellular tyrosine kinase domain [5] [6] [7]. Trans-autophosphorylation of the receptor [8] [9] on specific tyrosine residues couples the activated dimer to the intracellular signal transduction machinery as these phosphorylated residues serve as docking sites for adaptor and effector molecules containing Src homology 2 (SH2; reviewed in [10]) and phosphotyrosine-binding (PTB) [11] domains. The time-course and extent of EGFR phosphorylation are therefore important determinants of the underlying pathway and resulting cellular response. Our results strongly suggest that secondary proteins are recruited by activated receptors in endosomes, indicating that these are active compartments in signal transduction.  相似文献   

4.
Dual-colour imaging with GFP variants   总被引:12,自引:0,他引:12  
Green fluorescent protein (GFP) has become an important tool in cell biology and is widely used as a reporter for imaging intracellular proteins and structures in live cells. Recently, spectral variants of GFP with red- and blue-shifted fluorescence emissions have been characterized, opening the possibility of double labelling with two different-coloured GFP fusion proteins. This article reviews recent advances in this technique, with special emphasis on time-lapse imaging applications in living cells.  相似文献   

5.
In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.  相似文献   

6.
Although the distribution of DNA-binding proteins inside the cell nucleus can be analyzed by immunolabeling or by tagging proteins with GFP, we cannot establish whether the protein is bound to DNA or not. Here, we describe a novel approach that allows imaging of the in situ interaction between a GFP-fusion protein and DNA in the cell nucleus, using fluorescence resonance energy transfer (FRET). We used fluorescence lifetime imaging microscopy (FLIM) as a reliable tool to detect protein in contact with DNA. The method was successfully applied to the DNA-binding proteins histone H2B and the glucocorticoid receptor and to the heterochromatin-associated proteins HP1alpha and HP1beta.  相似文献   

7.
We present a multimodal technique for measuring the integral refractive index and the thickness of biological cells and their organelles by integrating interferometric phase microscopy (IPM) and rapid confocal fluorescence microscopy. First, the actual thickness maps of the cellular compartments are reconstructed using the confocal fluorescent sections, and then the optical path difference (OPD) map of the same cell is reconstructed using IPM. Based on the co‐registered data, the integral refractive index maps of the cell and its organelles are calculated. This technique enables rapidly measuring refractive index of live, dynamic cells, where IPM provides quantitative imaging capabilities and confocal fluorescence microscopy provides molecular specificity of the cell organelles. We acquire human colorectal adenocarcinoma cells and show that the integral refractive index values are similar for the whole cell, the cytoplasm and the nucleus on the population level, but significantly different on the single cell level.  相似文献   

8.
9.
The advent of GFP imaging has led to a revolution in the study of live cell protein dynamics. Ease of access to fluorescently tagged proteins has led to their widespread application and demonstrated the power of studying protein dynamics in living cells. This has spurred development of next generation approaches enabling not only the visualization of protein movements, but correlation of a protein's dynamics with its changing structural state or ligand binding. Such methods make use of fluorescence resonance energy transfer and dyes that report changes in their environment, and take advantage of new chemistries for site-specific protein labeling.  相似文献   

10.
Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP''s fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation.  相似文献   

11.
Fluorescent proteins are useful reporter molecules for a variety of biological systems. We present an alternative strategy for cloning reporter genes that are regulated by the nisin-controlled gene expression (NICE) system. Lactoccocus lactis was genetically engineered to express green fluorescent protein (GFP), mCherry or near-infrared fluorescent protein (iRFP). The reporter gene sequences were optimized to be expressed by L. lactis using inducible promoter pNis within the pNZ8048 vector. Expression of constructions that carry mCherry or GFP was observed by fluorescence microscopy 2 h after induction with nisin. Expression of iRFP was evaluated at 700 nm using an infrared scanner; cultures induced for 6 h showed greater iRFP expression than non-induced cultures or those expressing GFP. We demonstrated that L. lactis can express efficiently GFP, mCherry and iRFP fluorescent proteins using an inducible expression system. These strains will be useful for live cell imaging studies in vitro or for imaging studies in vivo in the case of iRFP.  相似文献   

12.
The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is hampered, however, by a high degree of spectral overlap, low quantum efficiencies and extinction coefficients [10], or rapid photobleaching [6]. Using fluorescence lifetime imaging microscopy (FLIM) [11] [12] [13] [14] [15] [16], four GFP variants were shown to have distinguishable fluorescence lifetimes. Among these was a new variant (YFP5) with spectral characteristics reminiscent of yellow fluorescent protein [8] and a comparatively long fluorescence lifetime. The fluorescence intensities of co-expressed spectrally similar GFP variants (either alone or as fusion proteins) were separated using lifetime images obtained with FLIM at a single excitation wavelength and using a single broad band emission filter. Fluorescence lifetime imaging opens up an additional spectroscopic dimension to wavelength through which novel GFP variants can be selected to extend the number of protein processes that can be imaged simultaneously in cells.  相似文献   

13.
Protein labeling techniques using small molecule probes have become important as practical alternatives to the use of fluorescent proteins (FPs) in live cell imaging. These labeling techniques can be applied to more sophisticated fluorescence imaging studies such as pulse-chase imaging. Previously, we reported a novel protein labeling system based on the combination of a mutant β-lactamase (BL-tag) with coumarin-derivatized probes and its application to specific protein labeling on cell membranes. In this paper, we demonstrated the broad applicability of our BL-tag technology to live cell imaging by the development of a series of fluorescence labeling probes for this technology, and the examination of the functions of target proteins. These new probes have a fluorescein or rhodamine chromophore, each of which provides enhanced photophysical properties relative to coumarins for the purpose of cellular imaging. These probes were used to specifically label the BL-tag protein and could be used with other small molecule fluorescent probes. Simultaneous labeling using our new probes with another protein labeling technology was found to be effective. In addition, it was also confirmed that this technology has a low interference with respect to the functions of target proteins in comparison to GFP. Highly specific and fast covalent labeling properties of this labeling technology is expected to provide robust tools for investigating protein functions in living cells, and future applications can be improved by combining the BL-tag technology with conventional imaging techniques. The combination of probe synthesis and molecular biology techniques provides the advantages of both techniques and can enable the design of experiments that cannot currently be performed using existing tools.  相似文献   

14.
Fluorescent proteins have emerged as an ideal fluorescent marker for studying cell morphologies in vital systems. These proteins were first applied in whole organisms with established germ-line transformation protocols, but now it is possible to label cells with fluorescent proteins in other organisms. Here we present two ways to introduce GFP expressing plasmids into avian embryos for vital confocal and two-photon imaging. First, electroporation is a powerful approach to introduce GFP into the developing neural tube, offering several advantages over dye labeling. Second, we introduce a new lipid-based transfection system for introducing plasmid DNA directly to a small group of injected cells within live, whole embryos. These complementary approaches make it possible to transfect a wide-range of cell types in the avian embryo and the bright, stable, uniform expression of GFP offers great advantages for vital fluorescence imaging.  相似文献   

15.
The steady improvement in the imaging of cellular processes in living tissue over the last 10–15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Förster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).  相似文献   

16.
The extracellular matrix protein tenascin-C plays a critical role in development, wound healing, and cancer progression, but how it is controlled and how it exerts its physiological responses remain unclear. By quantifying the behavior of live cells with phase contrast and fluorescence microscopy, the dynamic regulation of TN-C promoter activity is examined. We employ an NIH 3T3 cell line stably transfected with the TN-C promoter ligated to the gene sequence for destabilized green fluorescent protein (GFP). Fully automated image analysis routines, validated by comparison with data derived from manual segmentation and tracking of single cells, are used to quantify changes in the cellular GFP in hundreds of individual cells throughout their cell cycle during live cell imaging experiments lasting 62 h. We find that individual cells vary substantially in their expression patterns over the cell cycle, but that on average TN-C promoter activity increases during the last 40% of the cell cycle. We also find that the increase in promoter activity is proportional to the activity earlier in the cell cycle. This work illustrates the application of live cell microscopy and automated image analysis of a promoter-driven GFP reporter cell line to identify subtle gene regulatory mechanisms that are difficult to uncover using population averaged measurements.  相似文献   

17.
We present single‐molecule fluorescence data of fluorescent proteins GFP, YFP, DsRed, and mCherry, a new derivative of DsRed. Ensemble and single‐molecule fluorescence experiments proved mCherry as an ideally suited fluorophore for single‐molecule applications, demonstrated by high photostability and rare fluorescence‐intensity fluctuations. Although mCherry exhibits the lowest fluorescence quantum yield among the fluorescent proteins investigated, its superior photophysical characteristics suggest mCherry as an ideal alternative in single‐molecule fluorescence experiments. Due to its spectral characteristics and short fluorescence lifetime of 1.46 ns, mCherry complements other existing fluorescent proteins and is recommended for tracking and localization of target molecules with high accuracy, fluorescence resonance energy transfer (FRET), fluorescence lifetime imaging microscopy (FLIM), or multicolor applications. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
To accurately interpret the data from fluorescent proteins as reporters of gene activation within living cells, it is important to understand the kinetics of the degradation of the reporter proteins. We examined the degradation kinetics over a large number (>1,000) of single, living cells from a clonal population of NIH3T3 fibroblasts that were stably transfected with a destabilized, enhanced green fluorescent protein (eGFP) reporter driven by the tenascin-C promoter. Data collection and quantification of the fluorescence protein within a statistically significant number of individual cells over long times (14 h) by automated microscopy was facilitated by culturing cells on micropatterned arrays that confined their migration and allowed them to be segmented using phase contrast images. To measure GFP degradation rates unambiguously, protein synthesis was inhibited with cycloheximide. Results from automated live cell microscopy and image analysis indicated a wide range of cell-to-cell variability in the GFP fluorescence within individual cells. Degradation for this reporter was analyzed as a first order rate process with a degradation half-life of 2.8 h. We found that GFP degradation rates were independent of the initial intensity of GFP fluorescence within cells. This result indicates that higher GFP abundance in some cells is likely due to higher rates of gene expression, because it is not due to systematically lower rates of protein degradation. The approach described in this study will assist the quantification and understanding of gene activity within live cells using fluorescent protein reporters.  相似文献   

19.
20.
Microscopy has become an essential tool for cellular protein investigations. The development of new fluorescent markers such as green fluorescent proteins generated substantial opportunities to monitor protein-protein interactions qualitatively and quantitatively using advanced fluorescence microscope techniques including wide-field, confocal, multiphoton, spectral imaging, lifetime, and correlation spectroscopy. The specific aims of the investigation of protein dynamics in live specimens dictate the selection of the microscope methodology. In this article confocal and spectral imaging methods to monitor the dimerization of alpha enhancer binding protein (C/EBPalpha) in the pituitary GHFT1-5 living cell nucleus have been described. Also outline are issues involved in protein imaging using light microscopy techniques and the advantages of lifetime imaging of protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号