首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A spin-labeled fatty acid (16-doxylstearic acid), linked by an ester bond to a maleimide or a nitrene residue, was covalently attached to band 3 of erythrocyte membranes. The electron spin resonance spectrum of the spin-labeled protein was examined at different temperatures in: (a) whole erythrocyte ghosts; (b) ghosts depleted of spectrin and actin; (c) alkaline-treated ghosts; (d) vesicles made with purified band 3 reassociated with dimyristoylphosphatidylcholine. Most spectra are composite with a major component corresponding to a large overall splitting. The determination of the percentage of the immobilized component was carried out by pairwise subtraction. At low temperatures (1–7°C), the highest fraction of immobilized component was found in dimyristoylphosphatidylcholine vesicles (approx. 100%); alkaline-treated membranes had approx. 75% of the immobilized component at the same temperature; whole erythrocyte, spectrin/actin-depleted and spectrin/actin/ankyrin-depleted ghosts gave identical results (approx. 60% of immobilized component). The immobilized fraction decreased in all samples with increasing temperature or addition of a nonsolubilizing concentration of dodecyl octaethylene glycol monoether. In dimyristoylphosphatidylcholine vesicles, however, the modification in the ratio of the two components was obtained only above the lipid transition temperature (23°C). The strong immobilization of the spin-labeled lipid chain at all temperatures suggested trapping of the lipid chain between proteins. At low temperature, in dimyristoylphosphatidylcholine vesicles or in alkaline-treated ghosts, lipid-protein segregation is likely to take place. In whole erythrocyte ghosts, on the other hand, the large contribution of the motionally restricted component at physiological temperature indicates the oligomeric nature of band 3. Partial dissociation of the oligomers occurs as the temperature is increased, but the presence or absence of cytoskeletal proteins has no influence on the state of oligomerization of band 3.  相似文献   

2.
3.
4.
In an earlier study, we found that chymotryptic digestion of band 3 isolated from bovine erythrocyte membranes produces a 38,000-Da fragment in nonaethyleneglycol-n-dodecylether solution or a 50,000-Da fragment in deoxycholate solution as a primary fragment [Makino et al. (1984) J. Biochem. 95, 1019]. In the present study, these fragments were purified in an aqueous medium without detergent and their structural properties were examined. Several lines of evidence showed that the 50,000-Da fragment constitutes the entire cytoplasmic pole of bovine band 3 and that the 38,000-Da fragment is a subfragment of the 50,000-Da fragment. The large fragment was suggested to be divided into two distinct regions, the 12,000- and 38,000-Da portions, differing in their conformational thermal stability. However, attempts to identify the 12,000-Da portion as an isolable segment were without success. The cytoplasmic pole was characterized as a dimer which adopts an elongated gross conformation with helix of approximately 35%. Treatment of the fragments with dimethylmaleic anhydride dissociated the dimers into the monomers, accompanied by a significant conformational change of the 38,000-Da portion. Comparative studies suggested that the cytoplasmic domain of bovine band 3 has structurally different region(s) from that of human band 3, though their gross conformation shows extensive similarity.  相似文献   

5.
6.
In previous studies it has been shown that protoporphyrin-induced photodynamic effects on red blood cells are caused by photooxidation of amino acid residues in membrane proteins and by the subsequent covalent cross-linking of these proteins. Band 3, the anion transport protein of the red blood cell membrane, has a relatively low sensitivity to photodynamic cross-linking. This cannot be attributed to sterical factors inherent in the specific localization of band 3 in the membrane structure. Solubilized band 3, for instance, showed a similar low sensitivity to cross-linking. By extracellular chymotrypsin cleavage of band 3 into fragments of 60 000 and 35 000 daltons it could be shown that both fragments were about equally sensitive to photodynamic cross-linking. The 17 000 dalton transmembrane segment, on the other hand, was completely insensitive. Inhibition of band 3-mediated sulfate transport proceeded much faster than band 3 interpeptide cross-linking, presumably indicating that the inhibition of transport is caused by photooxidation of essential amino acid residues or intrapeptide cross-linking. A close parallel was observed between photodynamic inhibition of anion transport and decreased binding of 4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonate (H2DIDS), suggesting that a photooxidation in the immediate vicinity of the H2DIDS binding site may be responsible for transport inhibition.  相似文献   

7.
Bovine erythrocyte treatment with chymotrypsin, trypsin, pronase, papain, or ficin eliminated or weakened the reactivity of 18 of the 47 blood group factors which were examined. Thirteen of the affected factors were from the B system, and one each was from the C, FV, L, M, and R'S' systems. Variation attributable to pheno-group (allele) or genotype influences was observed in the effects upon six of the factors. Ficin-treated V/V, but not F/V or F/F, cells were rapidly lysed by normal rabbit serum (complement control). Absorptions with pronase-treated V positive cells indicated that essentially all V antigenicity was removed. However, immunizations with pronase-treated V positive cells elicited V antibody production in one of two recipient cows. The numbers of antigens removed by different enzymes did not appear to be closely related to the amount of protein removed.  相似文献   

8.
Bovine erythrocyte treatment with chymotrypsin, trypsin, pronase, papain, or ficin eliminated or weakened the reactivity of 18 of the 47 blood group factors which were examined. Thirteen of the affected factors were from the B system, and one each was from the C, FV, L, M, and R'S' systems. Variation attributable to pheno-group (allele) or genotype influences was observed in the effects upon six of the factors. Ficin-treated V/V, but not F/V or F/F, cells were rapidly lysed by normal rabbit serum (complement control). Absorptions with pronase-treated V positive cells indicated that essentially all V antigenicity was removed. However, immunizations with pronase-treated V positive cells elicited V antibody production in one of two recipient cows. The numbers of antigens removed by different enzymes did not appear to be closely related to the amount of protein removed.  相似文献   

9.
L M Schopfer  J M Salhany 《Biochemistry》1992,31(50):12610-12617
Fluorescence spectroscopy was used to follow the kinetics of covalent binding of DIDS (4,4'-diisothiocyanato-2,2'-stilbenedisulfonate) to isolated band 3 in C12E8. We have discovered a dilution-induced loss in the ability of band 3 monomer to form a covalent adduct with DIDS. The loss in DIDS reactivity with dilution followed a 50:50 biphasic time course despite the use of a homogeneous preparation of band 3 oligomers. The loss in reactivity generally correlated with the association of band 3 dimers and tetramers to higher oligomeric structures. The final aggregated product was capable of binding BADS (4-benzamido-4'-amino-2,2'-stilbenedisulfonate) reversibly, but with an affinity nearly 30-fold lower than that of the starting material. Removal of the cytoplasmic domain of band 3 slowed the conformational interconversion of the integral domain by about 5-fold and inhibited the aggregation process. The conformational interconversion was slowed in the presence of 150 mM chloride but not in 90 mM sulfate. Covalent binding of DIDS inhibited the aggregation of band 3. Addition of 250 microM lipid inhibited both the loss of DIDS reactivity and the protein aggregation process. While several types of lipid offer protection, phosphatidic acid accelerated the decay process by eliminating the biphasicity. We conclude that the conformation of the integral domain of band 3 can be modulated allosterically by the addition of ligands, including various lipids. The results offer direct evidence for cooperative interactions between band 3 subunits during loss of activity, and they show that the cytoplasmic domain participates in the control of this transition.  相似文献   

10.
The exothermic thermal denaturation transition of band 3, the anion transporter of the human erythrocyte membranes, has been studied by differential scanning calorimetry, in ghost membranes and in nonionic detergent micelles. In detergent micelles the transmembrane domain of band 3 gave an irreversible denaturation transition (C transition). However, no thermal transition was observed for the N-terminal cytoplasmic domain when band 3 was solubilised in detergent micelles. A reduction in enthalpy (190-300 kcal mol-1) with an accompanying decrease in thermal denaturation temperatures (48-60 degrees C) for the C transition was observed in detergent solubilised band 3 when compared with ghost membranes. Unlike ghost membranes, two thermal transitions for band 3 in detergent micelles were observed for the C transition when in the presence of excess covalent inhibitor, 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS), which derive from the thermal unfolding of a single protein with two different thermal stabilities; DIDS-stabilised (75 degrees C) and DIDS-insensitive (62 degrees C). A reduction in the denaturation temperature for the transmembrane domain of band 3 was observed when compared with intact band 3 although no significant differences was observed in the corresponding enthalpy values. This indicates some cooperativity of the two domains of band 3 in maintaining the transmembrane conformation. The results presented in this study show that detergents of intermediate micelle size (e.g. Triton X-100 and C12E8) are required for optimal thermal stability of band 3.  相似文献   

11.
Calcium-dependent protease activity capable of degrading a number of endogenous proteins was found in rat red blood cell membranes. This protease activity, like that found in human red blood cells, was activated by low concentrations of calcium, but in the rat red blood cells, unlike the human red blood cells, calcium-activated protease activity was membrane-bound. A number of endogenous membrane-bound proteins were degraded after the addition of calcium to the membranes. These included spectrin bands 1 and 2 as well as bands 3, 2.1, and 2.2. No calcium-induced aggregation (transglutaminase activity) was noted in the rat red blood cell membranes.  相似文献   

12.
Reversible binding of DIDS [4,4'-diisothiocyanato-2,2'-stilbenedisulphonate] to Band 3 protein, the anion exchanger located in erythrocyte plasma membrane, was studied in human erythrocytes. For this purpose, the tritiated form of DIDS ([3H]DIDS) has been synthesized and the filtering technique has been used to follow the kinetics of DIDS binding to the sites on Band 3 protein. The obtained results showed monophasic kinetics both for dissociation and association of the 'DIDS--Band 3' complex at 0 degree C in the presence of 165 mM KCl outside the cell (pH 7.3). A pseudo-first order association rate constant k+1 was determined to be (3.72 +/- 0.42) x 10(5) M-1 s-1, while the dissociation rate constant K-1 was determined to be (9.40 +/- 0.68) x 10(-3) s-1. The dissociation constant KD, calculated from the measured values of k-1 and k+1, was found to be 2.53 x 10(-8) M. The standard thermodynamics parameters characterizing reversible DIDS binding to Band 3 protein at 0 degree C were calculated. The mean values of the activation energies for the association and dissociation steps in the DIDS binding mechanism were determined to be (34 +/- 9) kJ mole-1 and (152 +/- 21) kJ mole-1, respectively. The results provide, for the first time, evidence for the reversibility of DIDS binding to Band 3 protein at 0 degree C. The existence of a stimulatory site is suggested, nearby the transport site on the Band 3 protein. The binding of an anion to this site can facilitate (through electrostatic repulsion interaction between two anions) the transmembrane movement of another anion from the transport site.  相似文献   

13.
Polyacrylamide gradient gel electrophoresis was carried out in micellar solutions of various detergents which differ in degree of potency to denature proteins. From the application of this method to band 3 protein from erythrocyte membranes, it was suggested that the procedure was useful in studying the molecular state of membrane proteins.The electrophoretic behaviors of human and bovine band 3 protein did not show any species specificity in either a denature state and a state resembling the native state. As well as in nonionic detergent solutions, the dimeric and tetrameric structures of bovine band 3 protein were preserved in sodium deoxycholate solution, in which protein complexes maintained in nonionic detergent solutions are frequently dissociated. Even in dodecyltrimethylammonium bromide solution, which is a denaturant for water-soluble proteins, part of the band 3 protein was still present as the oligomer. The results suggest that the oligomeric form of band 3 protein is the stable structure and that the dimer and tetramer possibly coexist in membranes.  相似文献   

14.
15.
With the eventual aim of purifying a membrane transport system by using reconstitution of transport activity as an assay, I showed that if, after the erythrocyte membrane is solubilized in deoxycholate, the detergent is removed, membrane vesicles re-form which retain glucose-transport activity. They take up and release D-glucose in preference to L-glucose and the uptake and release are sensitive to Hg2+ and phloretin. Release of tracer D-glucose is competitively inhibited by transported sugars inside the vesicles and increased by unlabelling D-glucose in the outside medium. Uptake of tracer is increased so much by preloading vesicles with unlabelled transported sugars that the tracer is probably concentrated against a gradient. When the membrane is solubilized, two proteins that span the membrane can be separated, suggesting that it will be possible to fractionate the membrane before reconstitution.  相似文献   

16.
We have examined the band 3 protein(s) of rabbit erythrocyte membranes by a combination of differential extraction and surface labeling methods. Only one major peptide was labeled when intact red cells were exposed to 125I? and lactoperoxidase; this coincided with band 3. When intact cells were exposed to galactose oxidase followed by [3H]borohydride, numerous surface glycoproteins were labeled, one of which clearly coincided with band 3. Differential extraction with lithium diiodosalicylate revealed one major band 3 glycoprotein which contained both the 125I? and 3H surface labels and three peptides which were unlabeled; these three peptides are apparently not exposed at the cell surface.  相似文献   

17.
18.
Thirty-nine blood group antigens were detected by hemolytic inhibition tests on erythrocyte ghosts prior to enzyme digestion. The ghosts, produced from erythrocytes collected from six different cattle, were digested with the proteolytic enzymes papain, protease, ficin, chymotrypsin and trypsin. Of the 39 antigens, 30 were removed from the membranes and detected in the soluble fraction resulting from the digestions. Some antigens were consistently removed by all enzymes digesting all ghosts possessing them, while the degree to which many other antigenic determinants were removed varied according to the ghosts being digested and the enzymes employed. Of the 9 remaining determinants never removed from the ghosts, some were detected in the insoluble fraction while others were not detected at all. These latter antigens were presumably destroyed by the enzyme digestion.  相似文献   

19.
Characterization of gangliosides from bovine erythrocyte membranes   总被引:2,自引:0,他引:2  
Two glucosamine-containing gangliosides, sialosylhexaglycosylceramides, were isolated from bovine erythrocyte membranes. Both gangliosides were hydrolyzed by neuraminidase isolated from Clostridium perfringens to become neutral hexaglycosylceramides. Based on the results of sequential enzymatic hydrolysis and gas chromatography-mass spectrometric analyses of the methylated sugars, the structures of these two gangliosides were shown to be NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4Glc-ceramide and NeuGcalpha2 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4Glc-ceramide, respectively. In addition, N-acetyl- and N-glycolylneuraminosyllacto-N-neotetraosylceramides, and N-acetyl- and N-glycolylneuraminosyllactosylceramides were also found in bovine erythrocytes. The predominant fatty acids in these two gangliosides were C 22:0 and C 24:0. C-18 sphingosine was the major base detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号