首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The present resolution (75-100 A) of the conventional scanning electron microscope (SEM) and its ability to image the surfaces of large numbers of whole cells in situ permit the approach of problems such as viral and cell surface antigen localization by immunological labeling with visual markers. Identification of virus and cell surface antigens in situ has been accomplished in indirect reactions by unconjugated markers. Hemocyanin (Hcy) from whelk, Busycon canniculatum, has been developed as an immunospecific marker for virion and cell surface labeling in the electron microscope. Its size (30 x 50 nm) and distinct cylindrical shape permit easy visualization in the SEM and the transmission electron microscope (TEM). The Hcy method involves the preparation of antisera to Hcy in appropriate hosts for use in an unlabeled antibody macromolecule procedure based exclusively on antigen-antibody affinity to couple the macromolecule to the antigen site. Further correlative data from fluorescence microscopy can be obtained from similarly labeled samples by binding fluorescein to the bridging antibodies used in the Hcy technique. The usefulness of the Hcy marker system was demonstrated by employing highly specific antisera to the major envelope and cell surface glycoprotein (gp70) of Rauscher murine leukemia virus (R-MuLV), a type C retrovirus. The antiserum was shown to bind to the virion and cell surfaces of virus-infected cells in the homologous virus-infected cell system. It also demonstrated the expression of R-MuLV gp70-related antigens on a murine cell line Mm5mt/c1 which produces mouse mammary tumor virus (MuMTV), a type B retrovirus. Furthermore, when used in the Hcy marker system the anti-gp70 serum was able to distinguish type B from type C budding virus on the same cell. Methods for the preparation of immunoreagents and labeling of cells are discussed.  相似文献   

2.
Certain alloantisera prepared in mice against H-2 region membrane antigens were found to be unexpectedly cytotoxic for murine sarcoma and leukemia cells in culture. This anomalous cytotoxicity was shown to be the result of antibody in these alloantisera directed against the p15 and gp70 envelope proteins of Mu LV which were present on the surface of the tumor target cells. Sera from aged unimmunized mice of strains used for the preparation of alloantisera also contained antibodies against MuLV protein p15 and gp70 that were cytotoxic for sarcoma and leukemia cells, which indicates that these antibodies occurred naturally in mice. These results independently confirm earlier findings of the widespread occurrence in mouse serum of antibodies reactive with MuLV. The presence of antibody against MuLV in mouse serum which can cause cytotoxic reactions with tumor cells points to the fact that particular caution should be used during the typing of murine sarcomas or leukemias for cell surface antigens, since mouse antisera may yield cytotoxicity (or other serologic reactions) based on anti-MuLV specificities, rather than on anticipated antigens.  相似文献   

3.
The development of the mouse mammary gland was studied immunohistochemically using monoclonal antibodies against cell surface and basement membrane proteins and a polyclonal antibody against keratin. We have identified three basic cell types: basal, myoepithelial, and epithelial cells. The epithelial cells can be subdivided into three immunologically related cell types: luminal type I, luminal type II, and alveolar cells. These five cell types appear at different stages of mammary gland development and have either acquired or lost one of the antibody-defined antigens. The cytoplasmic distribution of several of these antigens varied according to the location of the cells within the mammary gland. Epithelial cells which did not line the lumen expressed antigens throughout the cytoplasm. These antigens were demonstrated on the apical site in situations where the cells lined the lumen. One antigen became increasingly basolateral as the cells became attached to the basement membrane. The basal cells synthesize laminin and deposit it at the cell base. They are present in endbuds and ducts and are probably the stem cells of the mammary gland. Transitional forms have been demonstrated which developmentally link these cells with both myoepithelial and (luminal) epithelial cells.  相似文献   

4.
By indirect immunoelectron microscopy we tested for the presence of H-2 antigens on murine mammary tumor virus (MMTV) and murine leukemia virus (MuLV) particles. The association of H-2 antigens and viral antigens on the virus-infected cell surface was investigated with antibody-induced redistribution. Mammary tumor cells and leukemia cell lines with different H-2 genotypes and carrying different MuMTV or MuLV were used. No H-2 antigens could be demonstrated on the envelope of MMTV and MuLV particles, even after the permeabilization of their envelopes with saponin. On the surface of virus-infected cells antibody-induced patching or capping of the viral antigens did not result in copatching or cocapping of the H-2 antigens. In the reciprocal tests no co-redistribution of viral antigens with H-2 antigens was seen. Our experiments failed to show any physical association between H-2 antigens and MMTV or MuLV antigens on the cell surface.Abbreviations used in this paper MMTV mammary tumor virus - MuLV murine leukemia virus - MHC major histocompatibility complex - IEM immunelectron microscopy  相似文献   

5.
Bone marrow-derived (B) and thymus-derived (T) Balb/c mouse lymphocytes were identified in the scanning electron microscope (SEM) by the immunospecific attachment of one of several kinds of large-molecular-weight markers distinguishable in SEM. These markers (tobacco mosaic virus, keyhole limpet hemocyanin, bushy stunt virus, and bacteriophage T4) could be modified with hapten groups and linked with anti-hapten antibody, in an indirect (sandwich) scheme, to hapten-modified anti-cell-surface antibody bound to the cell surface. Hapten-modified antibodies to B cell antigens (goat anti-mouse-immunoglobulin) or to T cell antigens (rabbit anti-mouse brain) were employed to identify these two lymphoid cell types in unfractionated spleen, mesenteric lymph node, bone marrow, and thymus cell populations. The topography of B cells was always indistinguishable from that of T cells. No surface features were found to be unique to either cell type. In suspension, the majority of B and T cells had one or no microvilli regardless of the tissue source of the labeled cells. Cells in suspension that had microvilli (usually 10% of the total cell population) were always unlabeled. However, after cell contact with a glass surface, approximately half of both the B and T cell populations had a villous topography.  相似文献   

6.
The role played by either of the two differentiated mammary epithelial cell types in human breast cancer progression is currently not defined. This work addresses the question of whether the mammary tumor suppressor gene product BRCA1 is localized in basal and/or luminal epithelial cells in noncancerous outgrowth cultured from breast organoids. Primary epithelial cell outgrowths from ductal and alveolar preparations were directly employed to facilitate small-scale analysis under conditions closely approximating intact tissue. BRCA1 immunofluorescence was detected for the most part in cell nuclei of the epithelial outgrowth when using confocal microscopy. Nuclear staining was punctate in the cells with higher labeling intensity. Only minimal nonspecific staining was observed with mouse IgG as a negative primary antibody control or with primary antibody against the cell membrane receptor ErbB2, reported to be expressed in breast cancer, but was either not detectable or weakly expressed in normal breast tissue. Dual labeling was used to distinguish which epithelial cell type(s) stains for BRCA1. Primary monoclonal antibody against vimentin was used to identify basal cells, while antibody against cytokeratin 19 was used to identify luminal cells. Monoclonal antibody against BRCA1 was used for colabeling with each of these markers. Epifluorescence microscopy revealed BRCA1 immunoreactivity in both basal and luminal interphase cells. BRCA1 immunofluorescence was diffusely located about the chromosome mass during mitosis.  相似文献   

7.
Pseudotypes of vesicular stomatitis virus (VSV) containing envelope glycoproteins provided by C3H mammary tumor virus (MTV) instead of the normal VSV G-proteins were prepared and used to assay the presence of an MTV receptor on cells. The assay was specific as demonstrated by competition studies with excess MTV particles and neutralization of the pseudotypes with anti-MTV serum or monoclonal antibodies directed against MTV gp52. The MTV receptor was abundantly present on mouse cells but hardly detectable on nonmurine cells, including the Chinese hamster cell line E36. Somatic cell hybrids between E36 cells and GRS/A spontaneous leukemia cells (GRSL cells) and between E36 and GRS/A primary mammary tumor cells were made. The hybrids retained all Chinese hamster chromosomes but segregated mouse chromosomes. From the analysis of the isoenzymes and chromosomes of the hybrid cell lines we conclude that the gene for the receptor (MTVR-1) is located on mouse chromosome 16.  相似文献   

8.
Antisera against the following mouse mammary tumor virus (MMTV) structural proteins were used to detect MMTV cell surface antigens: (i) the 27,000-dalton nucleoid protein, p27; (ii) the 36,000-dalton envelope glycoprotein, gp36; and (iii) the 52,000-dalton exterior envelope glycoprotein, gp52. We report here the development of an adherent-cell isotopic staphylococcal protein A (SPA) test (ISPAT) for MMTV structural proteins which allows for the detection of an MMTV membrane-associated antigen as well as an estimate of its relative abundance on the cell surface. This test demonstrated that the gp52 was the predominant MMTV cell surface antigen detected on both C3H and GR mouse mammary tumor cells. In a comparative study with anti-gp52 and anti-gp36 sera, SPA-specific binding with anti-gp36 serum was found to be only 5 to 6% of that obtained for the external virion glycoprotein, gp52. Both direct and indirect ISPAT indicated the presence of a low but detectable number of gp36 determinants on GR-MMTV cells; however, these gp36 determinants, unlike gp52 determinants, appeared to be exposed by the fixation procedure used. Only 0.9 to 1.1% of the gp52-specific binding was detected when anti-gp36 serum was allowed to react with viable cells. The binding of [125I]SPA achieved with anti-p27 serum was even less than that detected with gp36-directed reagents, indicating that p27 is not a cell surface antigen. The use of fluoresceinated SPA further demonstrated that p27 and gp36 reactivity was only associated with a small number of cells in each of the mammary cultures tested. When N-[4-(5-nitro-2-furyl)-2-thiazoly]-formamide-induced C3H bladder tumor cells were subjected to a gp52-directed ISPAT, the failure to detect gp52-specific binding demonstrated the specificity of this assay for MMTV gp52-expressing cells. In addition to detecting and characterizing MMTV cell surface antigens, the newly developed adherent cell assay could measure changes in the abundance of cell surface gp52. When dexamethasone-treated and untreated GR cells were compared, measurements of gp52-specific SPA binding indicated that dexamethasone stimulation leads to a 12.2-fold increase in the amount of cell surface gp52 detected.  相似文献   

9.
Infection of cultured rat hepatoma cells by mouse mammary tumor virus.   总被引:18,自引:0,他引:18  
A continuous line of buffalo rat hepatoma (HTC) cells has been successfully infected with mouse mammary tumor virus (MMTV) produced by the GR mammary tumor cell line. Uniform infection required initial exposure of the HTC cells to greater than 10(5) MMTV particles per cell. The resultant chronically infected cell population was found to have stably acquired 20-30 copies of MMTV DNA. The infected cells contain viral RNA and express viral antigens; however, very few MMTV particles are released into the culture medium. In spite of the biochemical evidence for infection, we have not detected any alterations in the morphology or growth properties of the infected HTC cells. As is the case in mammary tumor cells, the intracellular concentration of viral RNA is strongly stimulated (50-150 fold) by the synthetic glucorcorticoid, dexamethasone. Thus it appears that the mechanisms by which glucorticoids regulate MMTV gene expression in mouse cells are maintained when this virus infects nonmurine cells.  相似文献   

10.
Dexamethasone (1,4-pregnadiene-9-fluor-16alpha-methyl-11beta,17alpha,21-triol-3,20-dione), a potent synthetic glucocorticoid, stimulates mouse mammary tumor virus expression 10- to 20-fold in tissue culture cells. This hormone effect was observed at concentrations as low as 1 times 10-10 M and was maximal at 10-7 to 10-8 M. The time course of induction indicated that detectable increases in extracellular viral DNA polymerase were first noted 18 to 24 hours following the addition of dexamethasone, and cells produced the highest polymerase levels at the time monolayers approached confluence. Steroid responsiveness was associated with specific increases in type B murine mammary tumor virus structural polypeptide (gp52(sl) expression and murine mammary tumor virus RNA that quantitatively paralleled the increase in extracellular virus production as measured by electron microscopy and supernatant RNA-dependent DNA polymerase activity. Another virally transformed murine cell line, KA 31, did not contain detectable levels of murine mammary tumor virus gp52(sl) or RNA before or after dexamethasone stimulation; thus induction was noted only in murine cells with pre-existing murine mammary tumor virus expression. No increase in basal levels of type C murine leukemia viral proteins or RNA was detected in dexamethasone-treated mammary cell lines which were producing increased levels of murine mammary tumor virus. Therefore, increases in murine mammary tumor virus gene products are specific for murine mammary tumor virus DNA sequences under these conditions.  相似文献   

11.
The concept of idiotype vaccines against tumor-associated antigens (TAA) was tested in the DBA/2 L1210 lymphoma subline, L1210/GZL. Monoclonal antibodies against a TAA that cross-reacts with the envelope glycoprotein gp52 of the mammary tumor virus were used to make hybridoma anti-idiotype antibodies (Ab2). In this report we describe the characterization of monoclonal anti-idiotypic antibodies against the combining site of 11C1 (Ab1), which recognizes a shared determinant of gp52 of mouse mammary tumor virus (MMTV) and the TAA of L1210/GZL. Hybridomas expressing the internal image of gp52 were screened by an idiotype inhibition assay. Mice sensitized with radiated L1210/GZL cells produced specific delayed type hypersensitivity (DTH) against the Ab2 hybridoma. Five Ab2 hybridomas were selected and were used to immunize DBA/2 mice. Such immunized animals showed specific DTH reaction against a challenge with the L1210/GZL tumor cells. Similar results were obtained in mice immunized with purified Ab2. Fluorescence-activated cell sorter analysis demonstrated that fluorescence staining of L1210/GZL cells by 11C1 can be completely inhibited with preabsorption on Ab2 hybridoma cells. Mice immunized with 2F10 and 3A4 coupled to keyhole limpet hemocyanin (KLH) contained antibodies binding to MMTV. But only in mice immunized with 2F10-KLH was significant inhibition of L1210/GZL tumor growth observed. Collectively, these results indicate that certain anti-idiotypic antibodies can mimic the MMTV gp52 antigen, as well as the gp52-like epitope expressed on the L1210/GZL tumor cells. These properties of anti-idiotypic antibodies mimicking TAA could be exploited for making idiotype vaccines against tumors.  相似文献   

12.
Processing of polypeptides of the mouse mammary tumor virus, a type B retrovirus, was investigated in a transplanted thymic lymphoma cell line of the GR strain (GRSL). This cell line was maintained in vivo in ascites form and in vitro as a suspension culture. GRSL cells produce clusters of intracytoplasmic A particles and are virtually deficient in the production of mature extracellular B-type particles. As control, a mammary tumor cell line of the same mouse strain capable of complete virion synthesis was used. The kinetics of viral polypeptide synthesis were studied by pulse labeling with various isotopes (including (35)S and (32)P), followed by immunoprecipitation of cell lysates with monospecific antisera to the major mouse mammary tumor virus gag and env proteins, p27 and gp52, respectively. Both the primary gag and env precursor polypeptides were synthesized in the GRSL cells, but their conversion into viral proteins was impaired. The major gag precursor, Pr73(gag), was stable over a period of 8 h, and mature viral core polypeptides could not be detected. Also, the highly phosphorylated intermediates in the proteolytic processing of Pr73(gag) in virus-producing cells were absent in GRSL cells. By immunoprecipitation, Pr73(gag) was detected in a GRSL particle fraction with the density of intracytoplasmic A particles. The precursor for envelope proteins, Pr73(env), was turned over without the generation of mature viral envelope components gp52 and gp36. The in vivo-transplanted ascites GRSL cells, however, were shown to express gp52 on the cell surface together with a 73,000-dalton polypeptide, as indicated by cell surface iodination and immunoprecipitation.  相似文献   

13.
A technique of in situ embedding of cells grown in BEEM capsules has been devised for immunoelectron microscopic studies of oncornaviruses. As compared to other immunoelectron microscopic procedures, this technique is less time and reagent-consuming. The quality and specificity of this method were tested on well-characterized mouse mammary tumor virus (type B virus) and murine sarcoma virus (type C virus particles). This method gave good results in labeling of the virus particles with ferritin or peroxidase in the cells of mouse tissue cultures. In an application of this method, peroxidase labeling of type B virus particles was obtained in frozen sections of normal prostatic tissues of C3H/Dm and A/Dm strain mice treated with rabbit antiserum to mouse mammary tumor virus from A/Dm strain mouse milk. These results indicate that this method is useful and reliable for immunoelectron microscopy studies of oncornaviruses in tissue culture cells and also in frozen sections of tissues.  相似文献   

14.
Specific spleen cell activity in microcytotoxicity assay can be altered by pretreatment of target mammary tumor virus (MTV)-induced mammary tumor cells with serum. Serum from both BALB/cfC3H females neonatally infected with MTV and BALB/c females horizontally exposed to MTV antigens will block specific spleen cell activity against isologous mammary tumor cells. On fractionation of sera, blocking factors are localized in the 7s fraction. The 19s fraction contains recruiting factors that are not detectable in the unfractionated serum; these factors are active against isologous tumors and are thus distinct from the tumor-specific recruiting factors previously described in the sera of tumor-bearing females, which are active only against the autologous tumor. Antibodies mediating complement-dependent cell lysis are also detectable after serum fractionation.  相似文献   

15.
M cells of intestinal epithelia overlying lymphoid follicles endocytose luminal macromolecules and microorganisms and deliver them to underlying lymphoid tissue. The effect of luminal secretory IgA antibodies on adherence and transepithelial transport of antigens and microorganisms by M cells is unknown. We have studied the interaction of monoclonal IgA antibodies directed against specific enteric viruses, or the hapten trinitrophenyl (TNP), with M cells. To produce monospecific IgA antibodies against mouse mammary tumor virus (MMTV) and reovirus type 1, Peyer's patch cells from mucosally immunized mice were fused with myeloma cells, generating hybridomas that secreted virus-specific IgA antibodies in monomeric and polymeric forms. One of two anti-MMTV IgA antibodies specifically bound the viral surface glycoprotein gp52, and 3 of 10 antireovirus IgA antibodies immunoprecipitated sigma 3 and mu lc surface proteins. 35S-labeled IgA antibodies injected intravenously into rats were recovered in bile as higher molecular weight species, suggesting that secretory component had been added on passage through the liver. Radiolabeled or colloidal gold-conjugated mouse IgA was injected into mouse, rat, and rabbit intestinal loops containing Peyer's patches. Light microscopic autoradiography and EM showed that all IgA antibodies (antivirus or anti-TNP) bound to M cell luminal membranes and were transported in vesicles across M cells. IgA-gold binding was inhibited by excess unlabeled IgA, indicating that binding was specific. IgG-gold also adhered to M cells and excess unlabeled IgG inhibited IgA-gold binding; thus binding was not isotype-specific. Immune complexes consisting of monoclonal anti-TNP IgA and TNP-ferritin adhered selectively to M cell membranes, while TNP-ferritin alone did not. These results suggest that selective adherence of luminal antibody to M cells may facilitate delivery of virus-antibody complexes to mucosal lymphoid tissue, enhancing subsequent secretory immune responses or facilitating viral invasion.  相似文献   

16.
A Novel Membrane Protein Is a Mouse Mammary Tumor Virus Receptor   总被引:5,自引:4,他引:1       下载免费PDF全文
Mouse mammary tumor virus (MMTV) infects a number of different cell types, including mammary gland and lymphoid cells, in vivo. To identify the cellular receptor for this virus, a mouse cDNA expression library was transfected into Cos-7 monkey kidney cells, and those transfected cells able to bind virus were selected by using antibody against the virus’s cell surface envelope protein, gp52. One clone isolated from a library prepared from newborn thymus RNA, called MTVR, was able to confer virus binding to both monkey and human cells; this binding was blocked by anti-MTVR antibody. Moreover, transfection of MTVR into CV1 cells rendered them susceptible to infection by a murine leukemia virus-based retrovirus vector pseudotyped with the MMTV envelope protein. An epitope-tagged MTVR cofractionated with cellular membranes. Coimmunoprecipitation of the MMTV envelope protein and a MTVR-rabbit Fc fusion protein showed that these two proteins bound to each other. The MTVR sequence clone is unique, shows no homology to known membrane proteins, and is transcribed in many tissues.  相似文献   

17.
Xenogeneic and allogeneic antisera to the major envelope glycoprotein (gp71) of murine leukemia viruses (NyLV) inhibited the mitogenic response of normal mouse splenic lymphocytes to phytohemagglutinin (PHA) and lipopolysaccharide (LPS). This inhibition was specific for gp71 as demonstrated by the inability of xenogeneic antisera to other viral glycoproteins or structural proteins to inhibit and by the ability of purified antigens to block specifically the inhibitory effect. The ability of antisera to gp71 to inhibit LPS responses, however, is highly dependent on the strain and age of mouse spleen cells used and appears correlated with the expression of endogenous viruses. Moreover, the preferential inhibition of LPS responses suggests that this expression may be predominately B cell specific. The results suggest that the inhibitory effect is mediated via antibody binding to lymphocytes and that expression of viral envelope antigens on the cell surface which bind immunoglobulins can block or interfere with the binding or uptake of mitogens. A variety of natural mouse immune sera and "tumor" sera, having antibodies directed against gp71, can similarly inhibit mitogen responses; and this inhibition can be specifically blocked with MuLV or gp71.  相似文献   

18.
Implantation of the mouse mammary tumor virus (MMTV)-producing mammary tumor cell line MJY-alpha into isogeneic mice elicited both humoral and T-cell responses against MMTV virion antigens. The carcinosarcomas which developed from the implanted cells showed a significant decrease in MMTV synthesis, compared with cells remaining in culture, which was detectable as early as 7 days after implantation and for five transplant generations. Electron microscopic examination of thin sections of the tumors revealed that intracytoplasmic A particles, budding particles, and cell-free MMTV B particles were all affected. However, immunofluorescence assays of tumor sections demonstrated the presence of MMTV viral antigens in the cells. Cell cultures initiated from first-, third-, and fourth-generation tumors were morphologically identical to the original in vitro cell line, although virus production was barely detectable. Analysis of the cultures by electron microscopy revealed a significant increase in MMTV virions after in vitro passage 3. Polypeptide profiles obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virions purified from these cultures were identical to MMTV. Immunodiffusion demonstrated the cross-reactivity between these virions and MMTV particles obtained from mouse milk. In vitro treatment of MJY-alpha cell cultures with rabbit anti-MMTV antiserum resulted in a reduction of extracellular MMTV virions, as well as alterations in their sodium dodecyl sulfate-polyacrylamide gel electrophoretic polypeptide patterns.  相似文献   

19.
The functional properties of cytotoxic lymphocytes from patients with Vogt-Koyanagi-Harada disease ( VKH ) specific for human melanoma cells (P-36 melanoma cell line established from a patient with malignant melanoma) were investigated by using monoclonal antibodies specific for human T cell subsets. Peripheral blood lymphocytes (PBL) from patients with VKH showed significant cytotoxic activity against the P-36 (SK-MEL-28) human melanoma cell line, but not against a human cervical carcinoma of the uterus cell line (HeLa-S3 cell line) or against a mouse melanoma cell line (B-16 cell line) originating from a C57BL/6 strain mouse or against the EL-4 mouse lymphoma cell line from a C57BL/6 mouse. The cytotoxic activity of the patients' PBL against the P-36 melanoma cell line was markedly reduced by pretreatment of the PBL with monoclonal anti-human Leu-1 antibody plus rabbit complement, but it was reduced to much less extent by pretreatment with either monoclonal anti-human Leu-2a or Leu-3a antibody plus rabbit complement. The specific cytotoxic activity of the patients' PBL against the P-36 human melanoma cell line is, therefore, mediated by T cells bearing Leu-1+ Leu-2a+ or Leu-1+ Leu-3a+ antigens. Furthermore, the cytotoxic activity was shown to be blocked not only by anti-Leu-2a antibody specific to human cytotoxic/suppressor T cells but also unexpectedly by anti-Leu-3a antibody which has previously been considered to be specific to human inducer/helper T cells. The results of this study suggest that at least two distinct subpopulations of cytotoxic T cells specific for P-36 human melanoma cells are present in the peripheral blood of VKH patients. These cytotoxic T cells have different surface antigens, Leu-2a and Leu-3a.  相似文献   

20.
The relative antigenicity of the individual herpes simplex virus type 1 (KOS) glycoproteins gC and gB was analyzed in BALB/c mice by using KOS mutants altered in their ability to present these antigens on cell surface membranes during infection. The mutants employed were as follows: syn LD70 , a non-temperature-sensitive mutant defective in the synthesis of cell surface membrane gC; tsF13 , a temperature-sensitive mutant defective in the processing of the precursor form of gB to the mature cell surface form at 39 degrees C; and ts606 , an immediate early temperature-sensitive mutant defective in the production of all early and late proteins including the glycoproteins. By comparing the relative susceptibility to immunolysis of mouse 3T3 cells infected at 39 degrees C with wild-type virus, presenting the full complement of the glycoprotein antigens, gC, gB, and gD, with target cells infected with mutants presenting only subsets of these antigens, we determined that a major portion of cytolytic antibody contained in hyperimmune anti-herpes simplex virus type 1 (KOS) mouse antiserum was directed against glycoproteins gC and gB. The relative immunogenicity of wild-type and mutant virus-infected cells also was compared in BALB/c mice. Immunogen lacking the mature form of gB induced a cytolytic antibody titer comparable to that of the wild-type virus, whereas that lacking the mature form of gC showed a 70% reduction in titer. The absence of the mature cell surface forms of gB and gC in immunogen preparations resulted in a 4- to 15-fold reduction in in virus neutralizing titer. Animals immunized with ts606 -infected cells (39 degrees C) induced relatively little virus-specific cytolytic and neutralizing antibody. Analysis of the glycoprotein specificities of these antisera by radioimmunoprecipitation showed that the antigens immunoprecipitated reflected the viral plasma membrane glycoprotein profiles of the immunogens. The absence of the mature forms of gC or gB in the immunizing preparation did not appreciably affect the immunoprecipitating antibody response to other antigens. Mice immunized with wild-type and mutant virus-infected cells were tested for their resistance to intracranial and intraperitoneal challenge with the highly virulent WAL strain of herpes simplex virus type 1. Despite the observed alterations in serum virus-specific antibody induced with the individual immunogens, all animals survived an intraperitoneal challenge of 10 50% lethal doses. However, differences in the survival of animals were obtained upon intracranial challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号