首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The inhibitory effect of L-lysine on penicillin biosynthesis by Penicillium chrysogenum has been compared in a low-producing strain (Wis. 54-1255) and a high-producing strain (ASP-78). Lysine inhibited total penicillin synthesis to a similar extent in both strains. However, in the high-producing strain the onset of penicillin synthesis occurred even at a high lysine concentration, whereas in the low-producing strain lysine had to be depleted before penicillin production commenced.  相似文献   

3.
The content of alpha-aminoadipyl-cysteinyl-valine, the first intermediate of the penicillin biosynthetic pathway, decreased when Penicillium chrysogenum was grown in a high concentration of glucose. Glucose repressed the incorporation of [14C]valine into alpha-aminoadipyl-cysteinyl-[14C]valine in vivo. The pool of alpha-aminoadipic acid increased sevenfold in control (lactose-grown) penicillin-producing cultures, coinciding with the phase of rapid penicillin biosynthesis, but this increase was very small in glucose-grown cultures. Glucose stimulated homocitrate synthase and saccharopine dehydrogenase activities in vivo and increased the incorporation of lysine into proteins. These results suggest that glucose stimulates the flux through the lysine biosynthetic pathway, thus preventing alpha-aminoadipic acid accumulation. The repression of alpha-aminoadipyl-cysteinyl-valine synthesis by glucose was not reversed by the addition of alpha-aminoadipic acid, cysteine, or valine. Glucose also repressed isopenicillin N synthase, which converts alpha-aminoadipyl-cysteinyl-valine into isopenicillin N, but did not affect penicillin acyltransferase, the last enzyme of the penicillin biosynthetic pathway.  相似文献   

4.
We previously reported that lysine inhibits in vivo homocitrate synthesis in the lysine bradytroph, Penicillium chrysogenum L(1), and that such feedback inhibition could explain the known lysine inhibition of penicillin formation. In the present study, it was found that dialyzed cell-free extracts of mutant L(1) converted [1-(14)C]acetate to homocitrate. This homocitrate synthase activity was extremely labile but could be stabilized by high salt concentrations. The pH optimum of the reaction was 6.9, and the K(m) was 5.5 mM with respect to alpha-ketoglutarate. The reaction was also dependent upon the presence of Mg(2+), adenosine 5'-triphosphate, and coenzyme A. Surprisingly, the activity in these crude extracts was not inhibited by lysine. Benzylpenicillin at a high concentration (20 mM) partially inhibited the enzyme, an effect that was enhanced by lysine. Casein hydrolysate also partially inhibited the enzyme.  相似文献   

5.
Pipecolic acid serves as a precursor of the biosynthesis of the alkaloids slaframine and swainsonine (an antitumor agent) in some fungi. It is not known whether other fungi are able to synthesize pipecolic acid. Penicillium chrysogenum has a very active alpha-aminoadipic acid pathway that is used for the synthesis of this precursor of penicillin. The lys7 gene, encoding saccharopine reductase in P. chrysogenum, was target inactivated by the double-recombination method. Analysis of a disrupted strain (named P. chrysogenum SR1-) showed the presence of a mutant lys7 gene lacking about 1,000 bp in the 3'-end region. P. chrysogenum SR1- lacked saccharopine reductase activity, which was recovered after transformation of this mutant with the intact lys7 gene in an autonomously replicating plasmid. P. chrysogenum SR1- was a lysine auxotroph and accumulated piperideine-6-carboxylic acid. When mutant P. chrysogenum SR1- was grown with L-lysine as the sole nitrogen source and supplemented with DL-alpha-aminoadipic acid, a high level of pipecolic acid accumulated intracellularly. A comparison of strain SR1- with a lys2-defective mutant provided evidence showing that P. chrysogenum synthesizes pipecolic acid from alpha-aminoadipic acid and not from L-lysine catabolism.  相似文献   

6.
The regulatory properties of four enzymes (homocitrate synthase, -aminoadipate reductase, saccharopine reductase, saccharopine dehydrogenase) involved in the lysine biosynthesis of Pichia guilliermondii were investigated and compared with the regulatory patterns found in other yeast species. The first enzyme of the pathway, homocitrate synthase, is feedback-inhibited by L-lysine. Some other amino acids (-aminoadipate, glutamate, tryptophan, leucine) and lysine analogues are also inhibitors of one or more enzymes. It is shown that only the synthesis of homocitrate synthase is weakly repressed by L-lysine.  相似文献   

7.
There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.  相似文献   

8.
9.
Subcellular fractionation of cell-free extracts obtained by nitrogen cavitation showed that Penicillium chrysogenum Q176 contains a cytosolic as well as a mitochondrial homocitrate synthase activity. The cytosolic isoenzyme was purified about 500-fold, and its kinetic and molecular properties were investigated. Native homocitrate synthase shows a molecular mass of 155 +/- 10 kDa as determined by gel filtration and a pH of 4.9 +/- 0.1 as determined by chromatofocusing. The kinetic behaviour towards 2-oxoglutarate is hyperbolic, with Km = 2.2 mM; with respect to acetyl-CoA the enzyme shows sigmoidal saturation kinetics, with [S]0.5 = 41 microM and h = 2.6. The enzyme was inhibited strongly by L-lysine (Ki = 8 +/- 2 microM; 50% inhibition by 53 microM at 6 mM-2-oxoglutarate), competitively with 2-oxoglutarate, in protamine sulphate-treated and desalted cell-free extracts and in partially purified preparations. The extent of this inhibition was strongly pH-dependent. Both isoenzymes are equally susceptible to inhibition by lysine. The same inhibition pattern is shown by the enzyme from strain D6/1014A, which is a better producer of penicillin than strain Q176.  相似文献   

10.
alpha-Aminoadipate reductase (alpha-AAR) is a key enzyme in the branched pathway for lysine and beta-lactam biosynthesis of filamentous fungi since it competes with alpha-aminoadipyl-cysteinyl-valine synthetase for their common substrate L-alpha-aminoadipic acid. The alpha-AAR activity in two penicillin-producing Penicillium chrysogenum strains and two cephalosporin-producing Acremonium chrysogenum strains has been studied. The alpha-AAR activity peaked during the growth-phase preceding the onset of antibiotic production, which coincides with a decrease in alpha-AAR activity, and was lower in high penicillin- or cephalosporin-producing strains. The alpha-AAR required NADPH for enzyme activity and could not use NADH as electron donor for reduction of the alpha-aminoadipate substrate. The alpha-AAR protein of P. chrysogenum was detected by Western blotting using anti-alpha-AAR antibodies. The mechanism of lysine feedback regulation in these two filamentous fungi involves inhibition of the alpha-AAR activity but not repression of its synthesis by lysine. This is different from the situation in yeasts where lysine feedback inhibits and represses alpha-AAR. Nitrate has a strong negative effect on alpha-AAR formation as shown by immunoblotting studies of alpha-AAR. The nitrate effect was reversed by lysine.  相似文献   

11.
A rapid assay is described for homocitrate synthase (EC 4.1.3.21) of the lysine biosynthetic pathway of Saccharomyces cerevisiae. The alpha-ketoglutarate-dependent cleavage of acetyl-coA was measured spectrophotometrically as decrease in absorbance at 600 nm in the presence of 2,6-dichlorophenol-indophenol and enzyme from the wild type strain X2180. This activity was also present in citrate synthaseless glutamate auxotroph glu3, and the activity was inhibited by 5 mM L-lysine. Radioactive homocitric acid was obtained from a reaction mixture containing [1-14C]acetyl-coA. Homocitrate synthase activity was dependent upon time, both substrates, and enzyme. The activity exhibited a pH and temperature optimum of 7.5-8.0 and 32 degrees C, respectively, and was inhibited by metal-chelating and sulfhydryl-binding agents.  相似文献   

12.
The activity and regulation of alpha-aminoadipate reductase in three Penicillium chrysogenum strains (Q176, D6/1014/A, and P2), producing different amounts of penicillin, were studied. The enzyme exhibited decreasing affinity for alpha-aminoadipate with increasing capacity of the respective strain to produce penicillin. The enzyme from all three strains was inhibited by L-lysine, and the enzyme from the lowest producer, Q176, was least sensitive. Between pH 7.5 and 6.5, inhibition of alpha-aminoadipate reductase by L-lysine was pH dependent, being more pronounced at lower pH. The highest producer strain, P2, displayed the lowest alpha-aminoadipate reductase activity at pH 7.0. In Q176, the addition of 0.5-1 mM of exogenous lysine stimulated penicillin formation, whereas the same concentration was ineffective or inhibitory with strains D6/1014/A and P2. The addition of higher (up to 5 mM) lysine concentrations inhibited penicillin production in all three strains. In mutants of P. chrysogenum D6/1014/A, selected for resistance to 20 mM alpha-aminoadipate, highest penicillin production was observed in those strains whose alpha-aminoadipate reductase was most strongly inhibited by L-lysine. The results support the conclusion that the in vivo activity of alpha-aminoadipate reductase from superior penicillin producer strains of P. chrysogenum is more strongly inhibited by lysine, and that this is related to their ability to accumulate increased amounts of alpha-aminoadipate, and hence penicillin.  相似文献   

13.
Penicillium chrysogenum L2, a lysine auxotroph blocked in the early steps of the lysine pathway before 2-aminoadipic acid, was able to synthesize penicillin when supplemented with lysine. The amount of penicillin produced increased as the level of lysine in the media was increased. The same results were observed in resting-cell systems. Catabolism of [U-14C]lysine by resting cells and batch cultures of P. chrysogenum L2 resulted in the formation of labeled saccharopine and 2-aminoadipic acid. Formation of [14C]saccharopine was also observed in vitro when cell extracts of P. chrysogenum L2 and Wis 54-1255 were used. Saccharopine dehydrogenase and saccharopine reductase activities were found in cell extracts of P. chrysogenum, which indicates that lysine catabolism may proceed by reversal of the two last steps of the lysine biosynthetic pathway. In addition, a high lysine:2-ketoglutarate-6-aminotransferase activity, which converts lysine into piperideine-6-carboxylic acid, was found in cell extracts of P. chrysogenum. These results suggest that lysine is catabolized to 2-aminoadipic acid in P. chrysogenum by two different pathways. The relative contribution of lysine catabolism in providing 2-aminoadipic acid for penicillin production is discussed.  相似文献   

14.
Compounds structurally related to lysine were tested against Penicillium chrysogenum Wis. 54-1255 for inhibition of growth, sporulation, and penicillin formation. This strain is relatively resistant to lysine analogs. The compounds that were the more active inhibitors of growth and whose activities were reversed by L-lysine were diaminohexynoic acid, N-epsilon-methyllysine, N-alpha-methyllysine, and diaminopimelic acid. These four compounds also inhibited sporulation, which was more sensitive to inhibition than growth was. Analogs strongly inhibiting benzyl-penicillin formation by resting mycelia were diaminohexynoic acid and N-epsilon-methyllysine. The action of the most active analog (diaminohexynoic acid) on penicillin synthesis was reversed by DL-alpha-aminoadipic acid.  相似文献   

15.
Compounds structurally related to lysine were tested against Penicillium chrysogenum Wis. 54-1255 for inhibition of growth, sporulation, and penicillin formation. This strain is relatively resistant to lysine analogs. The compounds that were the more active inhibitors of growth and whose activities were reversed by L-lysine were diaminohexynoic acid, N-epsilon-methyllysine, N-alpha-methyllysine, and diaminopimelic acid. These four compounds also inhibited sporulation, which was more sensitive to inhibition than growth was. Analogs strongly inhibiting benzyl-penicillin formation by resting mycelia were diaminohexynoic acid and N-epsilon-methyllysine. The action of the most active analog (diaminohexynoic acid) on penicillin synthesis was reversed by DL-alpha-aminoadipic acid.  相似文献   

16.
Summary Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants regenerated from the variant cultures. A feedback insensitive form of dihydrodipicolinate synthase (DHPS), the pathway specific control enzyme for lysine synthesis, was detected in callus cultures and leaf extracts from the resistant lines. Aspartate kinase (AK), the other key enzyme in the regulation of lysine biosynthesis, was unaltered in the mutants. Crosses with wild type plants indicated that the mutation conferring insensitivity to feedback in DHPS, with as result overproduction of lysine and resistance to AEC, was inherited as a single dominant nuclear gene.Abbreviations AK aspartate kinase (EC 2.7.2.4) - DHPS dihydrodipicolinate synthase (EC 4.2.1.52) - AEC S-(2-aminoethyl)L-cysteine  相似文献   

17.
Girish TS  Sharma E  Gopal B 《FEBS letters》2008,582(19):2923-2930
Lysine biosynthesis is crucial for cell-wall formation in bacteria. Enzymes involved in lysine biosynthesis are thus potential targets for anti-microbial therapeutics. Dihydrodipicolinate synthase (DHDPS) catalyzes the first step of this pathway. Unlike its homologues, Staphylococcus aureus DHDPS is a dimer both in solution and in the crystal and is not feedback inhibited by lysine. The crystal structure of S. aureus DHDPS in the free and substrate bound forms provides a structural rationale for its catalytic mechanism. The structure also reveals unique conformational features of the S. aureus enzyme that could be crucial for the design of specific non-competitive inhibitors.  相似文献   

18.
Lysine is one of the nutritionally limiting amino acids in food and feed products made from maize (Zea mays L.). Two enzymes in the lysine biosynthesis pathway, aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS), have primary roles in regulating the level of lysine accumulation in plant cells because both enzymes are feedback-inhibited by lysine. An isolated cDNA clone for maize DHPS was modified to encode a DHPS much less sensitive to lysine inhibition. The altered DHPS cDNA was transformed into maize cell suspension cultures to determine the effect on DHPS activity and lysine accumulation. Partially purified DHPS (wildtype plus mutant) from transformed cultures was less sensitive to lysine inhibition than wild-type DHPS from nontransformed cultures. Transformed cultures had cellular free lysine levels as much as four times higher than those of nontransformed controls. Thus, we have shown that reducing the feedback inhibition of DHPS by lysine can lead to increased lysine accumulation in maize cells. Increasing the capacity for lysine synthesis may be an important step in improving the nutritional quality of food and feed products made from maize.  相似文献   

19.
赖氨酸是人体和哺乳动物的必需氨基酸,必须从食物中补充。赖氨酸具有重要的营养生理功能,在医药、食品和饲料工业中应用广泛。本文综述赖氨酸的生理功能、应用与生产、赖氨酸在细菌中的生物合成与调控、高产赖氨酸生产菌株的育种方法及应用。目前高产L-赖氨酸的菌株选育技术主要包括诱变技术、基因重组和基因敲除技术等。改良现有菌种和发掘、筛选新的菌种,利用微生物发酵法大量生产L-赖氨酸,具有广阔的市场前景。  相似文献   

20.
Fungi produce α‐aminoadipate, a precursor for penicillin and lysine via the α‐aminoadipate pathway. Despite the biotechnological importance of this pathway, the essential isomerization of homocitrate via homoaconitate to homoisocitrate has hardly been studied. Therefore, we analysed the role of homoaconitases and aconitases in this isomerization. Although we confirmed an essential contribution of homoaconitases from Saccharomyces cerevisiae and Aspergillus fumigatus, these enzymes only catalysed the interconversion between homoaconitate and homoisocitrate. In contrast, aconitases from fungi and the thermophilic bacterium Thermus thermophilus converted homocitrate to homoaconitate. Additionally, a single aconitase appears essential for energy metabolism, glutamate and lysine biosynthesis in respirating filamentous fungi, but not in the fermenting yeast S. cerevisiae that possesses two contributing aconitases. While yeast Aco1p is essential for the citric acid cycle and, thus, for glutamate synthesis, Aco2p specifically and exclusively contributes to lysine biosynthesis. In contrast, Aco2p homologues present in filamentous fungi were transcribed, but enzymatically inactive, revealed no altered phenotype when deleted and did not complement yeast aconitase mutants. From these results we conclude that the essential requirement of filamentous fungi for respiration versus the preference of yeasts for fermentation may have directed the evolution of aconitases contributing to energy metabolism and lysine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号