首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of triethyltin (TET), triphenyltin (TPT), hexachlorophene (HCP) and cuprizone on adenosine cyclic 3',5'-monophosphate (cyclic AMP) production in rat brain was examined both in vitro and in vivo. TET and TPT inhibited basal adenylate cyclase activity of brain homogenate at a concentration as low as 1 microM in vitro but these compounds had no effect on norepinephrine (NE) and dopamine(DA)-stimluated enzyme activity. HCP and cuprizone failed to inhibit adenylate cyclase activity. In vivo TET given intravenously at a dose rate of 10 mg/kg decreased the cyclic AMP content of cerebrum, but not of medulla. TPT and HCP give intravenously and intraperitoneally respectively failed to decrease the cyclic AMP content of the cerebrum. In the case of TET the reduction in cyclic AMP content of the cerebrum was prevented by maintaining the rats normothermic after treatment. On the basis of these results the inhibition of adenylate cyclase produced by TET in brain homogenates in vitro would not appear to be involved in the development of nervous changes associated with acute TET toxicity, or in the production of progressive brain oedema caused by TET, HCP and cuprizone.  相似文献   

2.
The influence of increasing the in vivo concentration of cyclic AMP on the activity of cyclic nucleotide phosphodiesterase (PDE) in rat heart was investigated. One, three, and five hourly injections of 5.0 mg dibutyryl (Bt2) cyclic AMP significantly increased the activity of PDE in the supernatant fraction of rat heart using 1.0 microM cyclic AMP as the assay substrate concentration. When 100 microM cyclic AMP was used in the assay reaction, increases in enzymes activity were seen following five and eight nucleotide injections. The nucleotide-induced increase in PDE activity was dose dependent. When the five-injection protocol was used, PDE activity remained elevated for at least 4 h, while activity had returned to control levels within this time when two hourly injections were used. The nucleotide stimulation of PDE activity was blocked by cycloheximide. Five hourly infections of Bt2 cyclic AMP increased PDE activity in the liver and fast-twitch red muscle. A reduction in PDE activity in fast-twitch white muscle was seen following nucleotide injections. These findings are consistent with the hypothesis that prolonged elevations in the intracellular concentration of cyclic AMP cause an elevation in myocardial PDE activity. The increased activity seems to be the result of protein synthesis. These data suggest that cyclic AMP contributes significantly in regulating its own metabolism in the rat heart.  相似文献   

3.
Approximately 94% of rat parotid cyclic AMP phosphodiesterase activity measured at a substrate concentration of 0.1 microM cyclic AMP was found in the 100,000 X g supernatant while the remaining enzyme activity was in the particulate fraction. Incubation of parotid slices with 10 microM isoproterenol resulted in approximately 40% activation of the cyclic AMP phosphodiesterase activity of the 100,000 X g supernatant. The enzyme activity in the particulate fraction was unaffected. The activation resulted from an increase in the value of the Vmax while the apparent Km (0.51 microM) was unaffected. The concentration of isoproterenol required to give half-maximal activation was 0.34 microM. The activation was rapid, became significant after 2 min and reached maximum after 30 min incubation of the parotid slices with isoproterenol. The activation of the enzyme activity by isoproterenol could be blocked by propanolol but was unaffected by cycloheximide. Dibutyryl-cyclic AMP was also effective while phenylephrine and carbamylcholine were ineffective in increasing the activity of the enzyme.  相似文献   

4.
Two cyclic nucleotide phosphodiesterase (PDE) activities were identified in pig aortic endothelial cells, a cyclic GMP-stimulated PDE and a cyclic AMP PDE. Cyclic GMP-stimulated PDE had Km values of 367 microM for cyclic AMP and 24 microM for cyclic GMP, and low concentrations (1 microM) of cyclic GMP increased the affinity of the enzyme for cyclic AMP (Km = 13 microM) without changing the Vmax. This isoenzyme was inhibited by trequinsin [IC50 (concn. giving 50% inhibition of substrate hydrolysis) = 0.6 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 0.6 microM for cyclic GMP hydrolysis] and dipyridamole (IC50 = 5 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 3 microM for cyclic GMP hydrolysis). Cyclic AMP PDE exhibited a Km of 2 microM for cyclic AMP and did not hydrolyse cyclic GMP. This activity was inhibited by trequinsin (IC50 = 0.2 microM), dipyridamole (IC50 = 6 microM) and, selectively, by rolipram (IC50 = 3 microM). Inhibitors of cyclic GMP PDE (M&B 22948) and of low Km (Type III) cyclic AMP PDE (SK&F 94120) only weakly inhibited the two endothelial PDEs. Incubation of intact cells with trequinsin and dipyridamole induced large increases in cyclic GMP, which were completely blocked by LY-83583. Rolipram, SK&F 94120 and M&B 22948 did not significantly influence cyclic GMP accumulation. Dipyridamole enhanced the increase in cyclic GMP induced by sodium nitroprusside. Cyclic AMP accumulation was stimulated by dipyridamole and trequinsin with and without forskolin. Rolipram, although without effect alone, increased cyclic AMP in the presence of forskolin, whereas M&B 22948 and SK&F 94120 had no effects on resting or forskolin-stimulated levels. These results suggest that cyclic GMP-stimulated PDE regulates cyclic GMP levels and that both endothelial PDE isoenzymes contribute to the control of cyclic AMP.  相似文献   

5.
Extracellular cyclic AMP is source of extracellular adenosine in brain and kidney. Whether this occurs in adipose tissue is unknown. The present study evaluated the capacity of swine adipocyte plasma membranes to metabolize cyclic AMP to AMP and adenosine, via phosphodiesterase (PDE) and 5'-nucleotidase (5'-NT), respectively. Plasma membranes (PM) and microsomal membranes (MM) were isolated from over-the-shoulder subcutaneous adipose tissue of 3 month-old male miniature swine. The purity of the membrane fractions was determined and PDE and 5'-NT activities in PM and MM fractions were corrected for cross-contamination. The maximal activity of MM-PDE was 7-fold greater than that of PM-PDE. MM-PDE was 100% inhibited by 5 microM cilostamide, while PM-PDE was unaffected by this PDE3B inhibitor. Inhibitors of PDE1, PDE2, PDE4 and PDE5 also failed to inhibit PM-PDE. However, 1 mM DPSPX inhibited PM-PDE activity by 72%. When PM were incubated with 0.8 microM cyclic AMP for 20 min, AMP accumulation was four times that of adenosine. These data demonstrate that cyclic AMP can be converted to AMP and adenosine by the PM-bound enzymes 5'-NT and PDE, and suggest that the PM-PDE responsible for extracellular cyclic AMP metabolism to AMP is distinct from the intracellular MM-PDE.  相似文献   

6.
Four cyclic nucleotide phosphodiesterase (PDE) activities were separated from low-speed supernatants of homogenates of human cardiac ventricle by DEAE-Sepharose chromatography, and designated PDE I-PDE IV in order of elution with an increasing salt gradient. PDE I was a Ca2+/calmodulin-stimulated activity, and PDE II was an activity with a high Km for cyclic AMP which was stimulated by low concentrations of cyclic GMP. Human ventricle PDE III had Km values of 0.14 microM (cyclic AMP) and 4 microM (cyclic GMP), and showed simple Michaelis-Menten kinetics with both substrates. PDE IV is a previously unrecognized activity in cardiac muscle, the human enzyme having Km values of 2 microM (cyclic AMP) and 50 microM (cyclic GMP). PDE III and PDE IV were not activated by cyclic nucleotides or calmodulin. Four PDE activities were also isolated from guinea-pig ventricle, and had very similar kinetic properties. By gel filtration, the Mr of PDE III was 60,000, and that of PDE IV 45,000. The drug SK&F 94120 selectively and competitively inhibited PDE III with a Ki value of 0.8 microM (human), showing simple hyperbolic inhibition kinetics. Rolipram (Schering ZK 62711) and Ro 20-1724 (Roche), which have previously been reported to inhibit PDE III-like activities strongly, were shown to be weak inhibitors of human and guinea-pig PDE III enzymes (Ki values greater than 25 microM), but potent inhibitors of PDE IV [Ki values 2.4 microM (Rolipram) and 3.1 microM (Ro 20-1724) with human PDE IV]. The inhibition in all cases demonstrated simple hyperbolic competition. These observations suggest that the previously reported complex inhibition of PDE III-type activities from cardiac muscle was caused by incomplete separation of the PDE III from other enzymes, particularly PDE IV.  相似文献   

7.
Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.  相似文献   

8.
Fat cells were isolated from sedentary and exercise trained female Sprague-Dawley rats and cyclic AMP phosphodiesterase (cyclic AMP-PDE) activities were determined from crude homogenates of the fat cells in the whole homogenate, P5, P48, and S48 fractions. Exercise training resulted in a significant increase in the mean specific activity of cyclic AMP-PDE (pmol X min-1 X mg-1) from the whole homogenate and S48 fraction at cyclic AMP concentrations of 4, 8, and 16 microM and in the P48 fraction at 8 and 16 microM cyclic AMP. Cyclic AMP-PDE kinetic plots according to Lineweaver-Burk for the calculation of Michaelis constants (Km) and maximum enzyme velocities (Vmax) were nonlinear, indicating both a low and high enzyme form. The Michaelis constants were significantly lower in trained rats than those of its control for the high Km form of cyclic AMP-PDE in the whole and soluble fractions and for the low Km form of the P5 particulate fraction. The Vmax of the high Km form of the P48 particulate fraction from trained animals was also significantly higher than that found in its control. Phosphodiesterase inhibition by methylxanthines in the various fractions was similar in both trained and sedentary animals. These changes in specific activity, Michaelis constants, and Vmax of cyclic AMP-PDE from crude homogenates of isolated fat cells from exercise trained animals may account for the decreased intracellular levels of cyclic AMP following catecholamine stimulation of isolated fat cells from trained rats.  相似文献   

9.
The cyclic nucleotide phosphodiesterase (EC 3.4.16) activities of a rat liver particulate fraction were analyzed after solubilization by detergent or by freeze-thawing. Analysis of the two extracts by DEAE-cellulose chromatography revealed that they contain different complements of phosphodiesterase activities. The detergent-solubilized extract contained a cyclic GMP phosphodiesterase, a low affinity cyclic nucleotide phosphodiesterase whose hydrolysis of cyclic AMP was activated by cyclic GMP and a high affinity cyclic AMP phosphodiesterase. The freeze-thaw extract contained a cyclic GMP phosphodiesterase and two high affinity cyclic AMP phosphodiesterase, but no low affinity cyclic nucleotide phosphodiesterase. The cyclic AMP phosphodiesterase activities from the freeze-thaw extract and from the detergent extract all had negatively cooperative kinetics. One of the cyclic AMP phosphodiesterases from the freeze-thaw extract (form A) was insensitive to inhibition by cyclic GMP; the other freeze-thaw solubilized cyclic AMP phosphodiesterase (form B) and the detergent-solubilized cyclic AMP phosphodiesterase were strongly inhibited by cyclic GMP. The B enzyme appeared to be converted into the A enzyme when the particulate fraction was stored for prolonged periods at -20 degrees C. The B form was purified extensively, using DEAE-cellulose, a guanine-Sepharose column and gel filtration. The enzyme retained its negatively cooperative kinetics and high affinity for both cyclic AMP and cyclic GMP throughout the purification, although catalytic activity was always much greater for cyclic AMP. Rabbit antiserum was raised against the purified B enzyme and tested via a precipitin reaction against other forms of phosphodiesterase. The antiserum cross-reacted with the A enzyme and the detergent-solubilized cyclic AMP phosphodiesterase from rat liver. It did not react with the calmodulin-activated cyclic GMP phosphodiesterase of rat brain, the soluble low affinity cyclic nucleotide phosphodiesterase of rat liver or a commercial phosphodiesterase preparation from bovine heart. These results suggest a possible interrelationship between the high affinity cyclic nucleotide phosphodiesterase of rat liver.  相似文献   

10.
Phosphodiesterase activities for adenosine and guanosine 3':5'-monophosphates (cyclic AMP and cyclic GMP) were demonstrated in particulate and soluble fractions of rat anterior pituitary gland. Both fractions contained higher activity for cyclic GMP hydrolysis than that for cyclic AMP hydrolysis when these activities were assayed at subsaturating substrate concentrations. Addition of protein activator and CaCl2 to either whole homogenate, particulate or supernatant fraction stimulated both cyclic AMP and cyclic GMP phosphadiesterase activities. Almost 80% of cyclic AMP and 90% of cyclic GMP hydrolyzing activities were localized in soluble fraction. Particulate-bound cyclic nucleotide phosphodiesterase activity was completely solubilized with 1% Triton X-100. Detergent-dispersed particulate and soluble enzymes were compared with respect to Ca2+ and activator requirements and gel filtration profiles. Particulate, soluble and partially purified phosphodiesterase activities were also characterized in relation to divalent cation requirements, kinetic behavior and effects of Ca2+, activator and ethyleneglycol-bis-(2-aminoethyl)-N,N'-tetraacetic acid. Gel filtration of either sonicated whole homogenate or the 10500 X g supernatant fraction showed a single peak of activity, which hydrolyzed both cyclic AMP and cyclic GMP and was dependent upon Ca2+ and activator for maximum activity. Partially purified enzyme was inhibited by 1-methyl-3-isobutylxanthine and papaverine with the concentration of inhibitor giving 50% inhibition at 0.4 muM substrate being 20 muM and 24 muM for cyclic AMP and 7 muM and 10 muM for cyclic GMP, respectively. Theophylline, caffeine and theobromine were less effective. The rat anterior pituitary also contained a protein activator which stimulated both pituitary cyclic nucleotide phosphodiesterase(s) as well as activator-deficient brain cyclic GMP and cyclic AMP phosphodiesterases. Chromatography of the sonicated pituitary extract on DEAE-cellulose column chromatography resolved the phosphodiesterase into two fractions. Both enzyme fractions hydrolyzed cyclic AMP and cyclic GMP and had comparable apparent Km values for the two nucleotides. Hydrolysis of cyclic GMP and cyclic AMP by fraction II enzyme was stimulated 6--7-fold by both pituitary and brain activator in the presence of micromolar concentrations of Ca2+.  相似文献   

11.
Abstract: The cyclic nucleotide phosphodiesterase (PDE) activities were studied in a nerve ending fraction from bovine neural lobes. Most of the activity was particulate and unaffected by calcium. Lineweaver-Burk plots for this fraction showed negative cooperativity with apparent K m values for cyclic AMP of 11 μ M and for cyclic GMP of 4 μ M . The soluble activities for both cyclic nucleotides were activated by calcium and inhibited by calmodulin-binding drugs (trifluoperazine and calmidazolium). The apparent K m values were 50 μ M for cyclic AMP and 20 μ M for cyclic GMP for the soluble activities. Sucrose density gradients resolved the soluble activities into two peaks. The activity with the higher sedimentation rate (MW 122,000 daltons) hydrolysed both cyclic nucleotides and was calcium-calmodulin-dependent. The other peak (MW 47,000 daltons) had a higher affinity for cyclic AMP than for cyclic GMP and was calcium-independent. Solubilized particulate activities gave two main peaks on the density gradient, both calcium-independent. One was mainly for cyclic AMP (MW 47,000 daltons) and the other mainly for cyclic GMP (MW 133,000 daltons). The function of PDEs in relation to secretion was discussed.  相似文献   

12.
Two enzymes displaying cyclic GMP-stimulated cyclic AMP phosphodiesterase activity were purified from rat liver to apparent homogeneity: a 'particulate enzyme' found as an integral membrane protein associated with the plasma membrane, and a 'soluble' enzyme found in the cytosol. The physical properties of these enzymes were very similar, being dimers of Mr 134,000, composed in each instance of two subunits of Mr = 66,000-67,000. Both enzymes showed similar kinetics for cyclic AMP hydrolysis. They are both high-affinity enzymes, with kinetic constants for the particulate enzyme of Km = 34 microM and Vmax. = 4.0 units/mg of protein and for the cytosolic enzyme Km = 40 microM and Vmax. = 4.8 units/mg of protein. In both instances hydrolysis of cyclic AMP appeared to show apparent positive co-operativity, with Hill coefficients (happ.) of 1.5 and 1.6 for the particulate and cytosolic enzymes respectively. However, in the presence of 2 microM-cyclic GMP, the hydrolysis of cyclic AMP obeyed Michaelis kinetics (happ. = 1) for both enzymes. The addition of micromolar concentrations of cyclic GMP had little effect on the Vmax. for cyclic AMP hydrolysis, but lowered the Km for cyclic AMP hydrolysis to around 20 microM in both cases. However, at low cyclic AMP substrate concentrations, cyclic GMP was a more potent activator of the particulate enzyme than was the soluble enzyme. The activity of these enzymes could be selectively inhibited by cis-16-palmitoleic acid and by arachidonic acid. In each instance, however, the hydrolysis of cyclic AMP became markedly more sensitive to such inhibition when low concentrations of cyclic GMP were present. Tryptic peptide maps of iodinated preparations of these two purified enzyme species showed that there was considerable homology between these two enzyme forms.  相似文献   

13.
Addition of histamine (0.1 mM) to guinea-pig hippocampal slices causes a 20- to 30-fold increase in the accumulation of cyclic AMP compared with basal levels. This accumulation represents a balance between cyclic AMP production by adenylate cyclase and cyclic AMP breakdown mediated by phosphodiesterase (PDE). However, brain tissues are known to contain several different PDE isozymes. To determine which are involved in this response to histamine, the effect of isozyme-specific PDE inhibitors on cyclic AMP accumulation was examined in the hippocampus. MB 22948 (0.1 mM), an inhibitor of PDEs I and II, had no significant effect on the response to either 1 microM or 0.1 mM histamine. SKF 94120 (0.1 mM), a PDE III inhibitor, was also without effect in the presence of 1 microM histamine, although with 0.1 mM histamine, it caused a weak (1.25-fold compared with control), but statistically significant, enhancement of cyclic AMP accumulation. However, both rolipram (0.1 mM), a PDE IV inhibitor, and 3-isobutyl-1-methylxanthine (0.1 or 1 mM), an inhibitor of all forms of PDE, significantly increased cyclic AMP accumulation (2.8- to 6.5-fold compared with controls), and the relative size of this effect decreased with increasing histamine concentration. It is concluded that PDE IV is the main PDE isozyme involved in cyclic AMP turnover in guinea-pig hippocampal slices responding to histamine.  相似文献   

14.
Membrane-associated, Type II (cGMP-activatable) cyclic nucleotide phosphodiesterase (PDE) from rabbit brain, representing 75% of the total homogenate Type II PDE activity, was purified to apparent homogeneity. The enzyme was released from 13,000 x g particulate fractions by limited proteolysis with trypsin and fractionated using DE-52 anion-exchange, cGMP-Sepharose affinity and hydroxylapatite chromatographies. The enzyme showed 105 kDa subunits by SDS-PAGE and had a Stokes radius of 62.70 A as determined by gel filtration chromatography. Hydrolysis of cAMP or cGMP showed positive cooperativity, with cAMP kinetic behavior linearized in the presence of 2 microM cGMP. Substrate concentrations required for half maximum velocity were 28 microM for cAMP and 16 microM for cGMP. Maximum velocities were approx. 160 mumol/min per mg for both nucleotides. The apparent Kact for cGMP stimulation of cAMP hydrolysis at 5 microM substrate was 0.35 microM and maximal stimulation (3-5-fold) was achieved with 2 microM cGMP. Cyclic nucleotide hydrolysis was not enhanced by calcium/calmodulin. The purified enzyme can be labeled by cAMP-dependent protein kinase as demonstrated by the incorporation of 32P from [gamma-32P]ATP into the 105 kDa enzyme subunit. Initial experiments showed that phosphorylation of the enzyme did not significantly alter enzyme activity measured at 5 microM [3H]cAMP in the absence or presence of 2 microM cGMP or at 40 microM [3H]cGMP. Monoclonal antibodies produced against Type II PDE immunoprecipitate enzyme activity, 105 kDa protein and 32P-labeled enzyme. The 105 kDa protein was also photoaffinity labeled with [32P]cGMP. The purified Type II PDE described here is physicochemically very similar to the isozyme purified from the cytosolic fraction of several bovine tissues with the exception that it is predominantly a particulate enzyme. This difference may reflect an important regulatory mechanism governing the metabolism of cyclic nucleotides in the central nervous system.  相似文献   

15.
The role of cyclic AMP on endothelial cell proliferation was investigated, since these cells can be exposed to high concentrations of physiological and pharmacological agents that alter cyclic AMP metabolism. Cloned bovine aortic endothelial cells were plated at 25,000 cells/35mm dish and grown for 5 days in the presence of phosphodiesterase (PDE) inhibitors, forskolin, or cyclic AMP analogs. The PDE inhibitors dipyridamole, ZK 62 711, isobutylmethylxanthine (IBMX) and theophylline inhibited cell growth in a concentration-dependent manner. Dipyridamole produced a 30% and a 50% inhibition at 5 microM and 12.5 microM, while higher concentrations were cytotoxic. At its therapeutic plasma concentration range (50-100 microM) theophylline inhibited cell proliferation by 15-25%, while IBMX and the highly specific cyclic AMP phosphodiesterase inhibitor, ZK 62 711 inhibited growth by 60-80% and 40-50%, respectively. Forskolin (5 microM) increased cyclic AMP levels and cyclic AMP-kinase activity ratios by 2.5-fold and 2-fold. In the absence of PDE inhibitors forskolin produced a 20% growth inhibition at 0.5 microM and a 60% inhibition at 10 microM. The forskolin dose-response curve was not altered by theophylline, but was shifted to the left by approximately 10-fold with dipyridamole and ZK 62 711 and 5-fold with IBMX. Forskolin (5 microM), by itself produced a 1.8-fold increase in cyclic AMP. In the presence of 5 microM theophylline, dipyridamole, IBMX, and ZK 62 711, cyclic AMP was increased by forskolin 2.0, 2.6, 3.5, and 6.6-fold, respectively. 8-Bromo cyclic AMP and dibutyryl cyclic AMP produced a 55% and 60% growth inhibition at 100 microM. The cyclic GMP analogs were less effective inhibitors of growth (15-30%). Our results demonstrate that cyclic AMP analogs and pharmacological agents that elevate intracellular cyclic AMP levels inhibit cell growth and suggest that cyclic AMP may be an important endogenous regulator of endothelial cell proliferation.  相似文献   

16.
Nerve growth factor (NGF) has been shown to increase cyclic AMP in PC12 cells and to potentiate the actions of other agents that raise cyclic AMP. In our studies, NGF causes over 50% loss of PDE 2 activity (cyclic GMP-stimulated cyclic nucleotide phosphodiesterase) in PC12 cells within 24 h. After 72 h of NGF treatment, cyclic AMP hydrolysis in PC12 extracts is no longer cyclic GMP-stimulated. NGF deprivation increases the phosphodiesterase activity of treated cells. NGF does not decrease either PDE 2 mRNA or immunoreactivity of PDE 2A2 protein. Incubation of whole cells with micromolar Na(3)VO(4) mimics NGF treatment, reducing PDE 2 activity in PC12 cells by over 50% after 24 h, suggesting a phosphoprotein-mediated regulation of PDE 2 activity. Protein kinase inhibitor effects were difficult to assess due to their direct interaction with the PDE in cell lysates. To study phosphorylation in PDE 2 regulation, PDE 2A2 was epitope-tagged, and stable clonal PC12 cell transfectants were isolated (PC12B cells). When combined with metabolically labeled (32)P-phosphoproteins in vivo or in vitro, phosphoproteins of 108, 90, 64, 43, 33 and 19 kDa coprecipitated with epitope-tagged PDE 2A2 in an NGF sensitive manner. A 23-kDa phosphoprotein containing immunoreactive phosphoserine associated with the complex in an NGF independent manner. Phosphothreonine plus phosphotyrosine immunoreactivity at 23, 24, and 64 kDa as well as the phosphotyrosine immunoreactivity at 108, 90, 64, 43, 33, and 19 kDa required NGF or orthovanadate treatment. These proteins are hypothesized to be part of an NGF-regulated complex controlling PDE 2A2 activity.  相似文献   

17.
Murine adrenal cortex tumor Y-1 cells contained both soluble and particulate forms of cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotide hydrolase, EC 3.1.4.17). The soluble forms of the enzyme comprised 80% of total cellular phosphodiesterase activity. The soluble enzyme(s) hydrolyzed both cyclic AMP and cyclic GMP, with apparent Km values of 125 and 30 microM, respectively. Soluble cyclic AMP phosphodiesterase showed marked inhibition by the calcium chelator, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), and the anticalmodulin drugs, chlorpromazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), and calmidazolium. No alteration in soluble cyclic GMP phosphodiesterase activity was observed when cyclic AMP was added to the assay. Resolution of the soluble enzymatic activity by DEAE-cellulose chromatography in the presence of calcium showed two peaks of phosphodiesterase activity. Further purification of one of these peaks on DEAE-cellulose in the presence of EGTA yielded a phosphodiesterase activity peak that was stimulated fivefold by calmodulin. The particulate form of the enzyme hydrolyzed both cyclic AMP anc cyclic GMP; the apparent Km values for these substrates were similar (90 and 100 microM, respectively). Hydrolysis of cyclic GMP by the particulate enzyme was inhibited by cyclic AMP in a concentration-dependent manner with an apparent half-maximal inhibitory concentration of 100 microM. The particulate form of phosphodiesterase was not inhibited by EGTA or anticalmodulin drugs.  相似文献   

18.
In the absence of detergent, approximately 80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; approximately 85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity approximately 100% and calmodulin-stimulated approximately 400-500%. Although 1% Lubrol readily solubilized these PDE activities, approximately 75% of the cAMP PDE activity (0.5 microM [3H]cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide. Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. After solubilization and purification by chromatography on cGMP-agarose, heparin-agarose, and Superose 6, the brain particulate cGMP-stimulated PDE cross-reacted with antibody raised against a cGMP-stimulated PDE purified from calf liver supernatant. The brain enzyme exhibited a slightly greater subunit Mr than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V8 protease produced several peptides of similar size, as well as at least two distinct fragments of approximately 27 kDa from the brain and approximately 23 kDa from the liver enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

20.
C W Davis 《Life sciences》1985,37(1):85-94
Alterations in the cyclic AMP-dependent protein kinase activity ratio in response to putative neurotransmitters and other cyclic AMP-elevating agents in intact cerebral cortical slices and Krebs-Ringer particulate preparations from cerebral cortex were examined. Both norepinephrine (30 microM) and forskolin (20 microM) produced a time-dependent increase in intracellular levels of cyclic AMP in cerebral cortical slices which was paralleled by an increase in both cyclic AMP and the protein kinase activity ratio. The increases were maximal at 5 min. and remained elevated for at least 15 min. Forskolin, norepinephrine, adenosine and isoproterenol produced a concentration-dependent increase in both cyclic AMP and the protein kinase activity ratio, however, the degree of increase observed was dissimilar. Thus, a 5-fold change in intracellular cyclic AMP resulted in only a 2-fold increase in the activity ratio. Of the agents examined, forskolin produced the most marked change in the activity ratio (from 0.23 to 0.78 at 100 microM) while isoproterenol at 100 microM produced only a 50% increase in the activity ratio. The half-time for the decline in forskolin elicited elevations of either the activity ratio or cyclic AMP was about 4-6 min. In the presence of the phosphodiesterase inhibitor, Ro 20-1724, both were significantly prolonged being 60-70% of the maximum observed immediately after forskolin stimulation, at 15 min. Potentiation of forskolin elicited increases in the activity ratio by Ro 20-1724 were also observed but the increase in the activity ratio was maximal at 7.5 min. while cyclic AMP accumulations continued to rise during the entire 15 min. incubation. Particulate preparations from cerebral cortex were found to contain a cyclic AMP-dependent protein kinase which could be activated 2 to 3-fold with either forskolin, norepinephrine, or adenosine. Unlike the intact brain slice the changes in protein kinase activity ratio and intracellular levels of cyclic AMP in cell-free particulate preparations were similar in both time and degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号