首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
养殖动物及其相关环境耐药组的研究进展   总被引:1,自引:0,他引:1  
畜牧养殖业中大量抗生素的使用,导致养殖动物及其相关环境中存在大量的耐药基因/耐药细菌。这些耐药基因可以借助基因水平转移等方式在环境中进一步扩散,甚至进入食品动物随食物链传播,对生态环境、食品安全和人类健康造成极大的威胁。随着基因组学研究手段的不断进步,养殖动物及其相关环境中耐药基因的多样性和生态学分布规律被广泛揭示。文中综述了相关领域耐药基因的研究进展,探讨了其对人体健康的潜在影响,并对未来的研究方向进行了展望。  相似文献   

2.
Comparative mapping using somatic cell hybrids   总被引:2,自引:0,他引:2  
Summary Comparative mapping, or ascertaining the gene linkage relationships between different species, is rapidly developing. This is possible because new techniques in chromosome identification and somatic cell hybridization, such as the generation of hybrids preferentially segregating chromosomes of any desired species including rodents, and the development of gene transfer techniques have yielded new information about the human and rodent gene maps. In addition, the discovery and characterization of mouse subspecies has generated new mouse sexual genetic linkage data. The following picture is emerging. Several X-linked genes in man are X-linked in all mammalian species tested. The linkage relationships of several tightly linked genes, less than 1 map unit apart, are also conserved in all mammalian species tested. Ape autosomal genes are assigned to ape chromosomes homologous to their human counterparts indicating extensive conservation in the 12 million years (MYR) of evolution from apes to man. Similarly, mouse and rat, 10 MYR apart in evolution, have several large autosomal synteny groups conserved. In comparing the mouse and human gene maps we find that human genes assigned to different arms of the same human chromosome are unlinked in the mouse; mouse genes large map distances (20 to 45 cM) apart are very likely to be unlinked in the human. However, several autosomal synteny groups 10 to 20 cM apart, including thePgd, Eno-1, Pgm-1 group on human chromosome arm lp, are conserved in mice and man. This suggests that homology mapping, the superimposition of one species gene map on the homologous conserved portion of another species genome may be possible, and that ancestral autosomal synteny groups should be detectable. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976.  相似文献   

3.
In this paper, the current status of chicken genomics is reviewed. This is timely given the current intense activity centred on sequencing the complete genome of this model species. The genome project is based on a decade of map building by genetic linkage and cytogenetic methods, which are now being replaced by high-resolution radiation hybrid and bacterial artificial chromosome (BAC) contig maps. Markers for map building have generally depended on labour-intensive screening procedures, but in recent years this has changed with the availability of almost 500,000 chicken expressed sequence tags (ESTs). These resources and tools will be critical in the coming months when the chicken genome sequence is being assembled (eg cross-checked with other maps) and annotated (eg gene structures based on ESTs). The future for chicken genome and biological research is an exciting one, through the integration of these resources. For example, through the proposed chicken Ensembl database, it will be possible to solve challenging scientific questions by exploiting the power of a chicken model. One area of interest is the study of developmental mechanisms and the discovery of regulatory networks throughout the genome. Another is the study of the molecular nature of quantitative genetic variation. No other animal species have been phenotyped and selected so intensively as agricultural animals and thus there is much to be learned in basic and medical biology from this research.  相似文献   

4.
Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.  相似文献   

5.
哺乳动物经过长期进化,使其基因组在结构和功能上存在着明显的差异,构成了表型进化的基础。随着人类、部分哺乳动物基因组测序的完成,以比较基因组学为主要研究手段的哺乳动物进化研究应运而生,从而为在基因组水平上深入认识哺乳动物进化关系、揭示生命的起源和进化提供依据。对比较基因组学的主要研究方法进行了综述,进而探讨其在哺乳动物进化研究中的应用,并对哺乳动物比较基因组学的发展进行了展望。  相似文献   

6.
幸宇云  杨强  任军 《遗传》2016,38(3):217-226
CRISPR(Clustered regularly interspaced short palindromic repeats)/Cas(CRISPR associated proteins)是在细菌和古细菌中发现的一种用来抵御病毒或质粒入侵的获得性免疫系统.目前已发现的CRISPR/Cas系统包括Ⅰ,Ⅱ和Ⅲ型,其中Ⅱ型系统的组成较简单,由其改造成的CRISPR/Cas9技术已成为一种高效的基因组编辑工具.自2013年CRISPR/Cas9技术成功用于哺乳动物基因组定点编辑以来,应用该技术进行基因组编辑的报道呈现出爆发式的增长.农业动物不仅是重要的经济动物,也是人类疾病和生物医药研究的重要模式动物.本文综述了CRISPR/Cas9技术在农业动物中的研究和应用进展,简述了该技术的脱靶效应及减少脱靶的主要方法,并展望了该技术的应用前景.  相似文献   

7.
Recently, the French National Institute for Agricultural Research appointed an expert committee to review the issue of pain in food-producing farm animals. To minimise pain, the authors developed a ‘3S’ approach accounting for ‘Suppress, Substitute and Soothe’ by analogy with the ‘3Rs’ approach of ‘Reduction, Refinement and Replacement’ applied in the context of animal experimentation. Thus, when addressing the matter of pain, the following steps and solutions could be assessed, in the light of their feasibility (technical constraints, logistics and regulations), acceptability (societal and financial aspects) and availability. The first solution is to suppress any source of pain that brings no obvious advantage to the animals or the producers, as well as sources of pain for which potential benefits are largely exceeded by the negative effects. For instance, tail docking of cattle has recently been eliminated. Genetic selection on the basis of resistance criteria (as e.g. for lameness in cattle and poultry) or reduction of undesirable traits (e.g. boar taint in pigs) may also reduce painful conditions or procedures. The second solution is to substitute a technique causing pain by another less-painful method. For example, if dehorning cattle is unavoidable, it is preferable to perform it at a very young age, cauterising the horn bud. Animal management and constraint systems should be designed to reduce the risk for injury and bruising. Lastly, in situations where pain is known to be present, because of animal management procedures such as dehorning or castration, or because of pathology, for example lameness, systemic or local pharmacological treatments should be used to soothe pain. These treatments should take into account the duration of pain, which, in the case of some management procedures or diseases, may persist for longer periods. The administration of pain medication may require the intervention of veterinarians, but exemptions exist where breeders are allowed to use local anaesthesia (e.g. castration and dehorning in Switzerland). Extension of such exemptions, national or European legislation on pain management, or the introduction of animal welfare codes by retailers into their meat products may help further developments. In addition, veterinarians and farmers should be given the necessary tools and information to take into account animal pain in their management decisions.  相似文献   

8.
Pollution of the environment by human and animal faecal pollution affects the safety of shellfish, drinking water and recreational beaches. To pinpoint the origin of contaminations, it is essential to define the differences between human microbiota and that of farm animals. A strategy based on real-time quantitative PCR (qPCR) assays was therefore developed and applied to compare the composition of intestinal microbiota of these two groups. Primers were designed to quantify the 16S rRNA gene from dominant and subdominant bacterial groups. TaqMan® probes were defined for the qPCR technique used for dominant microbiota. Human faecal microbiota was compared with that of farm animals using faecal samples collected from rabbits, goats, horses, pigs, sheep and cows. Three dominant bacterial groups ( Bacteroides/Prevotella, Clostridium coccoides and Bifidobacterium ) of the human microbiota showed differential population levels in animal species. The Clostridium leptum group showed the lowest differences among human and farm animal species. Human subdominant bacterial groups were highly variable in animal species. Partial least squares regression indicated that the human microbiota could be distinguished from all farm animals studied. This culture-independent comparative assessment of the faecal microbiota between humans and farm animals will prove useful in identifying biomarkers of human and animal faecal contaminations that can be applied to microbial source tracking methods.  相似文献   

9.
To address the void in the availability of high-quality proteomic data traversing the animal tree, we have implemented a pipeline for generating de novo assemblies based on publicly available data from the NCBI Sequence Read Archive, yielding a comprehensive collection of proteomes from 100 species spanning 21 animal phyla. We have also created the Animal Proteome Database (AniProtDB), a resource providing open access to this collection of high-quality metazoan proteomes, along with information on predicted proteins and protein domains for each taxonomic classification and the ability to perform sequence similarity searches against all proteomes generated using this pipeline. This solution vastly increases the utility of these data by removing the barrier to access for research groups who do not have the expertise or resources to generate these data themselves and enables the use of data from nontraditional research organisms that have the potential to address key questions in biomedicine.  相似文献   

10.
The availability of resources including energy, nutrients and (developmental) time has a crucial impact on productivity of farm animals. Availability of energy and nutrients depends on voluntary feed intake and intestinal digestive and absorptive capacity at optimal feeding conditions. Availability of time is provided by the management in animal production. According to the resource allocation theory, resources have to be allocated between maintenance, ontogenic growth, production and reproduction during lifetime. Priorities for these processes are mainly determined by the genetic background, the rearing system and the feeding regimen. Aim of this review was to re-discuss the impact of a proper resource allocation for a long and healthy life span in farm animals. Using the barrel model of resource allocation, resource fluxes were explained and were implemented to specific productive life conditions of different farm animal species, dairy cows, sows and poultry. Hypothetically, resource allocation mismatch neglecting maintenance is a central process, which might be associated with morphological constraints of extracellular matrix components; evidence for that was found in the literature. A potential consequence of this limitation is a phenomenon called disproportionate growth, which counteracts the genetically determined scaling rules for body and organ proportions and could have a strong impact on farm animal health and production.  相似文献   

11.
Comparative mapping of chicken and human genomes is described, primarily of regions corresponding to human chromosomes 1, 4 and 9. Segments of chicken orthologues of selected human genes were amplified from parental DNA of the East Lansing backcross reference mapping population, and the two parental alleles were sequenced. In about 80% of the genes tested, sequence polymorphism was identified between reference population parental DNAs. The polymorphism was used to design allele-specific primers with which to genotype the backcross panel and place genes on the chicken linkage map. Thirty-seven genes were mapped which confirmed the surprisingly high level of conserved synteny between orthologous chicken and human genes. In several cases the order of genes in conserved syntenic groups differs between the two genomes, suggesting that there may have been more frequent intrachromosomal inversions as compared with interchromosomal translocations during the separate evolution of avian and mammalian genomes.  相似文献   

12.
The requirements for bioinformatics resources to support genome research in farm animals is reviewed.The resources developed to meet these needs are described. Resource databases and associated tools have been developed to handle experimental data. Several of these systems serve the needs of multinational collaborations. Genome databases have been established to provide contemporary summaries of the status of genome maps in a range of farm and domestic animals along with experimental details and citations. New resources and tools will be required to address the informatics needs of emerging technologies such as microarrays. However, continued investment is also required to maintain the currency and utility of the current systems, especially the genome databases.  相似文献   

13.
Amoeboid life forms can be found throughout the evolutionary tree. The greatest proportion of these life forms is found in the Amoebozoa clade, one of the six major eukaryote evolutionary branches. Despite its common origin this clade exhibits a wide diversity of lifestyles including free‐living and parasitic species and species with multicellular and multinucleate life stages. In this group, development, cooperation, and social behaviour can be studied in addition to traits common to unicellular organisms. To date, only a few Amoebozoa genomes have been sequenced completely, however a number of expressed sequence tags (ESTs) and complete and draft genomes have become available recently for several species that represent some of the major evolutionary lineages in this clade. This resource allows us to compare and analyse the evolutionary history and fate of branch‐specific genes if properly exploited. Despite the large evolutionary time scale since the emergence of the major groups the genomic organization in Amoebozoa has retained common features. The number of Amoebozoa‐specific genetic inventions seems to be rather small. The emergence of subgroups is accompanied by gene and domain losses and acquisitions of bacterial gene material. The sophisticated developmental cycles of Myxogastria and Dictyosteliida likely have a common origin and are deeply rooted in amoebozoan evolution. In this review we describe initial approaches to comparative genomics in Amoebozoa, summarize recent findings, and identify goals for further studies.  相似文献   

14.
In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2= 2= 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2= 2= 24 chromosomes, implying a reduction from = 12 to = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage‐specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1–AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian‐like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., 2009 , Nat. Genet. 41, 1275–1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia‐Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine‐scale understanding of the mechanisms of dysploid chromosome reduction that has not been achieved previously.  相似文献   

15.
Comparative anchor tagged sequence (CATS) consensus primers from loci mapped to human chromosomes 9, 10, 20, and 22 have been used to amplify homologous loci in pigs. Of 53, CATS primers tested in pigs, only 23 yielded products homologous to the human locus (42% success). Ten loci were physically mapped (43% success rate for verified products, but only 19% for primers tested). Due to lack of polymorphism, linkage mapping was possible only for AMBP. Map locations were consistent with human/pig ZOO-FISH, except for ADRA1A, whose position is still equivocal in humans. These CATS primers have made very limited contributions to pig/human comparative gene mapping because of low efficiency of amplification of orthologous porcine product, frequent amplification from rodent template in a somatic hybrid panel and low level of polymorphism.  相似文献   

16.
Several quantitative trait loci (QTL) for important reproductive traits (age of puberty, ovulation rate, nipple number and plasma FSH) have been identified on the long arm of porcine chromosome 10. Bi-directional chromosome painting has shown that this region is homologous to human chromosome 10p. Because few microsatellite or type I markers have been placed on SSC10, we wanted to increase the density of known ESTs mapped in this region of the porcine genome. Genes were chosen for their position on human chromosome 10, sequence availability from the TIGR pig gene indices, and their potential as a candidate gene. The PCR primers were designed to amplify across introns or 3'-UTR to maximize single nucleotide polymorphism (SNP) discovery. Parents of the mapping population (one sire and seven dams) were amplified and sequenced to find informative markers. The SNPs were genotyped using primer extension and mass spectrometry. These amplification products were also used to probe a BAC library (RPCI-44, Roswell Park Cancer Institute) for positive clones and screened for microsatellites. Six genes from human chromosome 10p (AKR1C2, PRKCQ, ITIH2, ATP5C1, PIP5K2A and GAD2) were mapped in the MARC swine mapping population. Gene order was conserved within these markers from centromere to telomere of porcine chromosome 10q, as compared with human chromosome 10p. Four of these genes (PIP5K2A, ITIH2, GAD2 and AKR1C2), which map under QTL, are potential candidate genes. Identification of porcine homologues near important QTL and development of a comparative map for this chromosome will allow further fine- mapping and positional cloning of candidate genes affecting reproductive traits.  相似文献   

17.
小麦的比较基因组学和功能基因组学   总被引:12,自引:1,他引:11  
小麦是异源多倍体植物,具有大的染色体组,并且基因组中重复序列所占比例较高,这些特征限制了小麦基因组研究的进展。比较基因组学方法为运用模式植物进行小麦基因组学研究提供了一个操作平台。功能基因组学的研究集中于基因组中转录表达的部分,基因功能的确定是功能基因组学研究的主要内容。对比较基因组学在小麦基因组研究中的应用和小麦功能基因组学的研究内容和方法进行了综述。  相似文献   

18.
19.
Domestication of animals has resulted in phenotypic changes by means of natural and human-directed selection. Body composition is important for farm animals because it reflects the status of energy reserves. Thus, there is the possibility that farm animals as providers of food have been more affected by human-directed selection for body composition than laboratory animals. In this study, an analysis was conducted to determine what similarities and differences in body composition occur between farm and laboratory animals using literature data obtained from seven comparative slaughter studies (n = 136 observations). Farm animals from four species (cattle, goats, pigs and sheep) were all castrated males, whereas laboratory animals from three species (dogs, mice and rats) comprised males and/or females. All animals were fed ad libitum. The allometric equation, Y = aXb, was used to determine the influence of species on the accretion rates of chemical components (Y, kg) relative to the growth of the empty body, fat-free empty body or protein weights (X, kg). There were differences between farm and laboratory animals in terms of the allometric growth coefficients for chemical components relative to the empty BW and fat-free empty BW (P < 0.01); farm animals had more rapid accretion rates of fat (P < 0.01) but laboratory animals had more rapid accretion rates of protein, water and ash (P < 0.01). In contrast, there was no difference in terms of the allometric growth coefficients for protein and water within farm animals (P > 0.2). The allometric growth coefficients for ash weight relative to protein weight for six species except sheep were not different from a value of 1 (P > 0.1), whereas that of sheep was smaller than 1 (P < 0.01). When compared at the same fat content of the empty body, the rate of change in water content (%) per unit change in fat content (%) was not different (P > 0.05) across farm animal species and similar ash-to-protein ratios were obtained except for dogs. The fraction of empty body energy gain retained as fat increased in a curvilinear manner, and there was little variation among farm animals at the same fat content of the empty body. These findings may provide the opportunity to develop a general model to predict empty body composition across farm animal species. In contrast, there were considerable differences of chemical body composition between farm and laboratory animals.  相似文献   

20.
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号