首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2'-Deoxycoformycin (DCF), a potent inhibitor of adenosine deaminase (ADA), is increasingly used as a tool to investigate adenosine metabolism and neuromodulation. To advance further the usefulness of DCF for studies of purines in the CNS, we determined the inhibitory potency of this compound against ADA and adenylate deaminase (AMPDA) in brain, the rate of ADA recovery in various brain regions after single or repeated intraperitoneal DCF administrations, and the effect of DCF on several neurotransmitter synthetic enzymes. In vitro, the Ki values for inhibition of ADA and AMPDA were found to be 23 pM and 233 microM, respectively. In vivo, DCF inhibited ADA with ED50 values ranging from 155 to 280 micrograms/kg at 2 h posttreatment, and 98% inhibition was achieved with 1 mg/kg. AMPDA activity was not affected by doses up to 5.0 mg/kg. In contrast to the greater than 95% inhibition of ADA seen 1 day after DCF at 5 mg/kg, the effectiveness of a second similar DCF treatment on the activity that had recovered by 14 days was dramatically reduced. Eight days after DCF treatment with doses of 5-50 mg/kg, the degree of ADA activity recovery in 10 brain regions examined was similar; it averaged 35% of control values at the low dose but showed some heterogeneity, ranging from 15 to 54% of control values, at the higher doses. Forty days after treatment with a single dose of 5 mg/kg, ADA activity recovered by 68-78% of control values in brain regions with normally high levels of activity and by 44-59% of control values in other regions. The activities of choline acetyltransferase, glutamic acid decarboxylase, and histidine decarboxylase (an enzyme colocalized with ADA in hypothalamic neurons) were unaffected by DCF treatment, a result suggesting the lack of a generalized neurotoxic effect. The very low doses of DCF required for ADA inhibition in vivo are consistent with the high potency of this drug against ADA in vitro, and any physiological effects observed at low doses might therefore be ascribed to inhibition of ADA.  相似文献   

2.
The stereoenantimers D-[3H]adenosine and L-[3H]adenosine were used to study adenosine accumulation in rat cerebral cortical synaptoneurosomes. L-Adenosine very weakly inhibited rat brain adenosine deaminase (ADA) activity with a Ki value of 385 microM. It did not inhibit rat brain adenosine kinase (AK) activity, nor was it utilized as a substrate for either ADA or AK. The rate constants (fmol/mg of protein/s) for L-[3H]adenosine accumulation measured in assays where transport was stopped either with inhibitor-stop centrifugation or with rapid filtration methods were 82 +/- 14 and 75 +/- 10, respectively. Using the filtration method, the rates of L-[3H]adenosine accumulation were not significantly different from the value of 105 +/- 15 fmol/mg of protein/s measured for D-[3H]adenosine transport. Unlabeled D-adenosine and nitrobenzylthiolnosine, both at a concentration of 100 microM, reduced the levels and rates of L-[3H]adenosine accumulation by greater than 44%. These findings suggest that L-adenosine, a metabolically stable enantiomeric analog, and the naturally occurring D-adenosine are both taken up by rat brain synaptoneurosomes by similar processes, and as such L-adenosine may represent an important new probe with which adenosine uptake may be studied.  相似文献   

3.
Mechanically dissociated brain cells from adult rats were used to study biochemically and pharmacologically their capacity to accumulate rapidly [3H]adenosine. The assay, which used an inhibitor-stop method to prevent further uptake into cells, was characterized with respect to protein and optimal substrate concentrations, and incubation times that ranged from 5 to 180 s. The accumulation of [3H]adenosine using 15-s incubation periods, conditions under which less than 10% of accumulated [3H]adenosine was metabolized, was best described kinetically by a two-component system with Km and Vmax values for the high-affinity component of 0.8 microM and 6.2 pmol/mg protein/15 s and for the low-affinity component 259 microM and 2,217 pmol/mg protein/15 s, respectively. The potencies with which nucleosides, adenosine deaminase resistant adenosine receptor agonists, and nucleoside uptake inhibitors competed for these uptake components were determined. Of the nucleosides examined, adenosine was the "preferred" substrate for the uptake site. The Ki value of adenosine for the high-affinity component was 10.7 microM. Inosine and uridine competed for a single lower affinity uptake system: Ki values were 142 and 696 microM, respectively. Nucleoside uptake inhibitors--nitrobenzylthioinosine, dipyridamole, and dilazep--were the most potent inhibitors of [3H]adenosine accumulation tested: the Ki values for the high-affinity system were 0.11, 1.3, and 570 nM, respectively. The adenosine analogs S-phenylisopropyladenosine, R-phenylisopropyladenosine, and cyclohexyladenosine inhibited the high-affinity component with Ki values of 2.3, 9.3, and 14.5 microM, respectively. N-Ethylcarboxamidoadenosine competed for a single lower affinity uptake system: Ki, 292 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Quantitative autoradiography was used to investigate the effects of Mg2+ on agonist and antagonist binding to A1 receptors in rat striatum. A1 receptors were labelled with the selective agonist N6-[3H]cyclohexyladenosine ([3H]CHA) or the selective antagonist 1,3-[3H]dipropyl-8-cyclopentylxanthine ([3H]DPCPX). Mg2+ had no significant effect on equilibrium binding constants for [3H]CHA [control: KD (95% confidence interval) of 0.34 (0.15-0.80) nM and Bmax of 267 +/- 8 fmol/mg of gray matter; with 10 mM Mg2+: KD of 0.8 (0.13-4.9) nM and Bmax of 313 +/- 8.9 fmol/mg of gray matter] or [3H]DPCPX [control: KD of 0.54 (0.30-0.99) nM and Bmax of 256 +/- 2.3 fmol/mg of gray matter; with 10 mM Mg2+: KD of 1.54 (0.2-11.0) nM and Bmax of 269 +/- 35.7 fmol/mg of gray matter]. In contrast, Mg2+ slowed the apparent association rate for both ligands; this was observed as a shift from a one-component to a two-component model for [3H]DPCPX. Mg2+ also affected the dissociation rates of both ligands; for [3H]CHA, dissociation in the presence of Mg2+ was not detected. Mg2+ produced a concentration-dependent inhibition of [3H]CHA binding only prior to equilibrium. HPLC was performed on untreated sections, sections preincubated with adenosine deaminase (ADA), and sections preincubated with ADA and incubated with ADA in the absence or presence of Mg2+. Adenosine was found in measurable quantities under all conditions, and the concentration was not influenced by Mg2+ or by the inclusion of GTP in the preincubation medium. From these data, we conclude the following: (a) adenosine is present and may be produced continuously in brain sections; (b) ADA is not capable of completely eliminating the produced adenosine; (c) Mg2+ apparently does not influence adenosine production or elimination; (d) A1 receptor-guanine nucleotide binding protein coupling is maximal in this preparation; and (e) Mg2+ decreases the dissociation rate of bound endogenous adenosine from A1 receptors, thus limiting the access of [3H]CHA and [3H]DPCPX to the receptors. Thus, enhancement of endogenous adenosine binding to A1 receptors by Mg2+ is a complicating factor in receptor autoradiography and may be so in other preparations as well.  相似文献   

5.
D J Porter  E Abushanab 《Biochemistry》1992,31(35):8216-8220
The enantiomers of erythro-9-(2-hydroxy-3-nonyl)adenine [(+)- and (-)-EHNA) bound to adenosine deaminase (ADA) at pH 7 with concomitant changes in the optical properties of the enzyme. The association rate constant for (+)-EHNA was 2.9 x 10(6) M-1 s-1 and that for (-)-EHNA was 6.4 x 10(6) M-1 s-1. The dissociation of (-)-EHNA.ADA or (+)-EHNA.ADA in the presence of excess coformycin was monitored by the quenching of enzyme fluorescence as coformycin.ADA was formed. The dissociation rate constants of (+)- and (-)-EHNA.ADA were 0.0054 s-1 and 2.7 s-1, respectively. A similar value for the dissociation rate constant (0.005 s-1) for (+)-EHNA.ADA was calculated from the time course for the appearance of catalytic activity after dilution of (+)-EHNA.ADA into 100 microM adenosine. The Ki values of ADA for (+)- and (-)-EHNA were similar to the dissociation constants calculated from the ratio of the respective dissociation and association rate constants. The biphasic time-dependent inhibition of the catalytic activity of ADA by (+/- )-EHNA [Frieden, C., Kurz, L. C., & Gilbert, H. R. (1980) Biochemistry 19, 5303-5309] was confirmed. However, the catalytic activity of ADA was inhibited monophasically by (+)-EHNA. Thus, the biphasic nature of the time course for inhibition of ADA by (+/- )-EHNA was the result of the presence of both enantiomers of the inhibitor in this assay. These kinetic data were interpreted in terms of single-step mechanisms for binding of (+)- and (-)-EHNA.  相似文献   

6.
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory drug, which also act as a mitochondrial toxin. As it is known that selective mitochondrial complex I inhibition combined with mild oxidative stress causes striatal dopaminergic dysfunction, we tested whether DCF also compromise dopaminergic function in the striatum. [3H]Dopamine ([3H]DA) release was measured from rat striatal slices after in vitro (2 h, 10-25 micromol/L) or in vivo (3 mg/kg i.v. for 28 days) DCF treatment. In vitro treatment significantly decreased [3H]DA uptake and dopamine (DA) content of the slices. H2O2 (0.1 mmol/L)-evoked DA release was enhanced. Intracellular reactive oxygen species production was not significantly changed in the presence of DCF. After in vivo DCF treatment no apparent decrease in striatal DA content was observed and the uptake of [3H]DA into slices was increased. The intensity of tyrosine hydroxylase immunoreactivity in the striatum was highly variable, and both decrease and increase were observed in individual rats. The H2O2-evoked [3H]DA release was significantly decreased and the effluent contained a significant amount of [3H]octopamine, [3H]tyramine, and [3H]beta-phenylethylamine. The ATP content and adenylate energy charge were decreased. In conclusion, whereas in vitro DCF pre-treatment resembles the effect of the mitochondrial toxin rotenone, in vivo it rather counteracts than aggravates dopaminergic dysfunction.  相似文献   

7.
Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [3H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [3H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [3H]CGS 21680 binding. [3H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [3H]GMP binding was inhibited by GMP and GppNHp, but not by 1S,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.  相似文献   

8.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

9.
Inhibition of adenosine deaminase activity leads to decreased cellular immunity. The effect of deoxycoformycin (DCF), a potent inhibitor of adenosine deaminase, on the ability of mouse spleen cells to generate antibody responses in vitro has been examined. With either continuous exposure to or pretreatment of the cells with deoxycoformycin, there was a decrease in cell survival and an increase in antibody-producing cells in the surviving cell population. To identify the cell population most susceptible to the inhibitor, the spleen was separated into B-cell, and T-cell, and macrophage components and each population was pretreated with deoxycoformycin before combination with its complementary treated or untreated population. Deoxycoformycin pretreatment had no effect on macrophages or B cells; however, pretreatment of the T cells resulted in increased antibody responses. When T cells and B cells were both pretreated and combined, there was a synergistic increase in the antibody response. In addition, supernatants from cultures in which both B cells and T cells had been pretreated with DCF were capable of enhancing antibody responses in cultures containing DCF-treated T cells. Though adenosine was increased in the stimulatory culture supernatants, adenosine alone did not enhance antibody responses in either untreated or DCF-treated cultures.  相似文献   

10.
The mechanism underlying beta,gamma-methylene ATP (beta,gamma-MeATP)-induced cAMP elevation was investigated in rat glioma C6Bu-1 cells. Beta,gamma-MeATP increased forskolin-stimulated cAMP formation in a manner sensitive to both the P1 antagonist xanthine amine congener (XAC) and the P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Adenosine deaminase (ADA; 1 U/mL), which abolished the adenosine-induced response, did not eliminate the beta,gamma-MeATP-induced response. However, combination of ADA with alpha,beta-methylene ADP (alpha,beta-MeADP), an ecto-5'-nucleotidase inhibitor, blocked the beta,gamma-MeATP-induced response. AMP, the substrate for ecto-5'-nucleotidase, also induced cAMP formation in a manner sensitive to XAC and alpha,beta-MeADP inhibition. However, the AMP-induced response was not blocked by PPADS. HPLC analyses revealed that adenosine was generated from beta,gamma-MeATP and AMP. In addition, alpha,beta-MeADP inhibited the conversion of beta,gamma-MeATP and AMP to adenosine, whereas PPADS blocked adenosine formation from beta,gamma-MeATP but not from AMP. [3H]Adenosine generated from [3H]AMP was preserved on the cell surface environment even in the presence of ADA. The mRNAs for ecto-phosphodiesterase/pyrophosphatase 1 (EC 3.1.4.1), ecto-5'-nucleotidase (EC 3.1.3.5) and adenosine A2B receptor were detected by RT-PCR. These results suggest that C6Bu-1 cells possess ecto-enzymes converting beta,gamma-MeATP to adenosine, and the locally accumulated adenosine in this mechanism efficiently stimulates A2B receptors in a manner resistant to exogenous ADA.  相似文献   

11.
Rats with experimental parkinsonism induced by intraperitoneal daily administration of rotenone (2.75 mg/kg) during seven days are characterized by an increased activity of prolyl endopeptidase (PEP; ЕС 3.4.21.26) in serum and a decreased activity of adenosine deaminase (ADA; EC 3.5.4.4) in serum and in the prefrontal cortex. PEP and ADA activities in other brain structures (in the striatum, hypothalamus, and hippocampus) as well as activity of dipeptidyl peptidase IV (DPP-4, CD26; ЕС 3.4.14.5) in serum and in all the brain structures investigated remained unchanged. Afobazole and levodopa, which exhibit antiparkinsonian activity in this model of parkinsonism, decreased the elevated PEP activity in serum and increased ADA activity reduced in the prefrontal cortex of rats with the experimental pathology. At the same time, treatment with these drugs resulted in a decrease of ADA activity in the other brain structures.  相似文献   

12.
Examination of the binding characteristics of the adenosine agonist radioligands [3H]N6-cyclohexyladenosine [( 3H]CHA), [3H]cyclopentyladenosine [( 3H]CPA), and [3H]5'-N-ethylcarboxamido adenosine [( 3H]NECA) to membranes prepared from PC12 cells showed that the A-1-selective ligands (CHA and CPA) had minimal binding, which was not amenable to analysis using curve-fitting programs. However, [3H]NECA, a nonselective A-1/A-2 agonist, gave reproducible binding, which was enhanced by removal of endogenous adenosine, using the catabolic enzyme adenosine deaminase. This binding was of high affinity (KD = 4.7 nM) with limited capacity (263 fmol/mg of protein). Specific binding of [3H]NECA was unaffected by the presence of either CPA (50 nM) or MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM), a finding suggesting involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. Binding of [3H]NECA to PC12 cell membranes was stereo-selective, with the R isomer of N6-phenylisopropyladenosine (PIA) being approximately 12 times more active than S-PIA. The A-1-selective agonist CPA was a weak inhibitor of [3H]NECA binding (Ki = 251 nM). The rank order of activity of adenosine agonists in displacing specific [3H]NECA binding was NECA greater than or equal to 2-chloroadenosine greater than CHA greater than or equal to 5'-N-methylcarboxamido adenosine greater than or equal to R-PIA greater than CPA greater than S-PIA. Binding was also displaced by the marine adenosine agonist 1-methylisoguanosine and by a series of xanthine antagonists with the activity order being 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 8-phenyltheophylline greater than 8-p-sulfophenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF. The majority of thymocytes present at Day 9 and at Day 14 in inhibitor-treated rats had the characteristics of subcapsular cortical thymocytes which are probably the most ancestral of the thymocytes. Thus, an induced ADA deficiency blocked the proliferation and differentiation of subcapsular cortical thymocytes which are the precursors of cortical and medullary thymocytes.  相似文献   

14.
The binding of [3H]dipyridamole ([3H]DPR) to guinea pig brain membranes is described and compared to that of [3H]nitrobenzylthioinosine ([3H]NBI). The binding of [3H]DPR is saturable, reversible, and specific with pharmacologic evidence indicating that this ligand is binding to the adenosine uptake site. Compared to [3H]NBI the binding of [3H]DPR is of higher capacity (Bmax = 208 +/- 16 fmol/mg protein for [3H]NBI and 530 +/- 40 fmol/mg protein for [3H]DPR) and lower affinity (KD = 0.35 +/- 0.02 nM for [3H]NBI and 7.6 +/- 0.7 nM for [3H]DPR). The adenosine uptake inhibitors are the most potent inhibitors of binding (Ki of 10(-8)-10(-7) M) whereas adenosine receptor ligands such as cyclohexyladenosine, 2-chloroadenosine, and various methylxanthines are several orders of magnitude less potent (Ki 10(-5)-10(-2). The inhibition of [3H]DPR binding by NBI is biphasic, with only 40% of binding being susceptible to inhibition of NBI concentrations less than 10(-5) M. The tissue distribution of [3H]DPR binding parallels that of [3H]NBI although in most cases significantly more sites are observed with [3H]DPR. Calcium channel blocking agents such as nifedipine, nimodipine, and verapamil are also inhibitors of [3H]DPR binding with potencies in the micromolar range. The data are consistent with [3H]DPR being a useful additional ligand for the adenosine uptake site and provide evidence that multiple uptake binding sites exist of which only about 40% are NBI-sensitive.  相似文献   

15.
The L-stereoisomer analogues of D-coformycin selectively inhibited P. falciparum adenosine deaminase (ADA) in the picomolar range (L-isocoformycin, Ki 7 pM; L-coformycin, Ki 250 pM). While the L-nucleoside analogues, L-adenosine, 2,6-diamino-9-(L-ribofuranosyl)purine and 4-amino-1-(L-ribofuranosyl)pyrazolo[3,4-d]-pyrimidine were selectively deaminated by P. falciparum ADA, L-thioinosine and L-thioguanosine were not. This is the first example of 'non-physiological' L-nucleosides that serve as either substrates or inhibitors of malarial ADA and are not utilised by mammalian ADA.  相似文献   

16.
Several Good buffers (MOPS, ACES, BES, HEPES, ADA, and PIPES) competitively inhibited both high-affinity and low-affinity [3H]gamma-aminobutyric acid receptor binding to rat brain synaptic membranes. The most potent inhibitor was MOPS, which had Ki values of 180 nM and 79 nM for the high- and low-affinity binding sites, respectively. HEPES had Ki values of 2.25 mM and 115 microM. The buffers had no appreciable effect on sodium-dependent GABA binding or on gamma-aminobutyrate aminotransferase activity. Surprisingly, the buffers were extremely ineffectual as inhibitors of either high- or low-affinity [3H]muscimol binding. Indeed, they were of the order of 10(5) times less effective in this case than against [3H]GABA binding. These results clearly show (a) that the use of such buffers as MOPS or HEPES should be avoided in studying the interaction of GABA with its receptor, and (b) the binding sites of [3H]GABA and [3H]muscimol are not identical.  相似文献   

17.
1. The adenosine deaminase (ADA) activities of chicken erythrocyte and heart cytosols had pH optima of 6.5. The temperature optima for erythrocyte and heart ADA were 30 and 35 degrees C, respectively. 2. The deoxyadenosine/adenosine deamination ratios ranged from 0.75 to 0.84 for both ADA activities. 3. For erythrocyte ADA, Km values were 8.9-12.9 microM adenosine (range) and 8.3 microM 2'-deoxyadenosine. For heart ADA, Km values were 6.7-12.0 microM adenosine (range) and 5.3 microM 2'-deoxyadenosine. 4. Inosine was a competitive inhibitor of both erythrocyte (Ki = 73 microM) and heart (Ki = 109 microM) ADA.  相似文献   

18.
The effect of glucocorticoids on the blood-brain barrier (BBB) was studied in rats following a single injection or 3 days of dexamethasone administration. Tracers with a low permeability across the intact endothelium, [14C]sucrose and alpha-[3H]aminoisobutyric acid ([3H]AIB), were simultaneously injected intravenously in untreated rats or in rats treated with dexamethasone. Unidirectional blood-to-brain transfer constants (Ki) in 14 regions of the rat brain were determined. In regions of control brain, average Ki values for AIB and sucrose were approximately 0.0020 and 0.00060 ml g-1 min-1, respectively. The lowest transfer constants were found in caudate nucleus, hippocampus, white matter, and cerebellum. In dexamethasone-treated animals, Ki values for both sucrose and AIB markedly decreased by 30-50% in almost all brain regions. These results indicate that a single injection or 3 days of treatment with dexamethasone causes an apparent reduction in the normal BBB permeability, and dexamethasone may greatly interfere with drug delivery into brain. These observations may have an importance for the administration of drugs in brain disease in the presence of steroids.  相似文献   

19.
New phenyl adenine compounds 5-7 were synthesized as analogues of adenosine and studied for their adenosine deaminase (ADA) substrate activity. The 9-[(o-hydroxymethyl)phenyl]methyl]adenine 5 and 9-[(m-hydroxymethyl)phenyl]adenine 7 were deaminated by ADA, and 9-[(o-hydroxyethyl)phenyl]adenine 6 was not deaminated up to 7 days. The ADA substrates 5 and 7 were deaminated quantitatively to their inosine analogues in 10 and 6h, respectively.  相似文献   

20.
A new radiolabeled adenosine receptor agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadeno sin e (CGS 21680), apparently specific for high-affinity binding sites of the A2 subtype in rat brain, was used to identify and pharmacologically characterize adenosine receptors in human brain. The binding of [3H]CGS 21680, as determined by standard radioligand binding technique in the presence of exogenously added adenosine deaminase, reached equilibrium after 40 min at 25 degrees C. In saturation studies, a single class of high-affinity binding sites with values for KD of 22 +/- 0.5 nM and Bmax of 444 +/- 63 fmol/mg of protein were observed. Similar binding characteristics were observed regardless of whether rapid filtration or centrifugation was used to separate bound versus free ligand. Of the 14 brain regions examined, [3H]CGS 21680 binding was highest in putamen, followed by globus pallidus and caudate nucleus. The level of [3H]CGS 21680 binding in these areas of basal ganglia was identical to 5'-N-[3H]ethylcarboxamidoadenosine ([3H]NECA) binding in the presence of 50 nM N6-cyclopentyladenosine (CPA). The rank order of agonist potencies as determined by a series of competition experiments was NECA greater than or equal to CGS 21680 greater than 2-chloroadenosine greater than N6-(R)-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6-(S)-phenylisopropyladenosine. This potency order was the same for the binding of [3H]CGS 21680 to rat, and of [3H]NECA in the presence of 50 nM CPA to rat and human, brain membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号