共查询到20条相似文献,搜索用时 15 毫秒
1.
Acquired immune responses to Plasmodium falciparum merozoite surface protein-1 in the human fetus. 总被引:3,自引:0,他引:3
Christopher L King Indu Malhotra Alex Wamachi John Kioko Peter Mungai Sherif Abdel Wahab Davy Koech Peter Zimmerman John Ouma James W Kazura 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(1):356-364
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas. 相似文献
2.
Levels of superoxide dismutase (SOD) activity and its properties in Plasmodium falciparum-infected erythrocytes, isolated parasites, and noninfected erythrocytes were studied. A higher specific activity was found in P. falciparum-infected erythrocytes compared to noninfected erythrocytes, resulting from the lower protein content of infected cells and not enzyme synthesis by the parasite, as the superoxide dismutase activity expressed per number of cells was decreased. Superoxide dismutase from noninfected erythrocytes and isolated P. falciparum parasites showed similar sensitivities to various inhibitors and had identical molecular weights and electrophoretic mobilities. These results support the hypothesis of uptake and use of the erythrocytic SOD enzyme by the parasite as a possible mechanism of defense against oxidative stress. 相似文献
3.
D'Ombrain MC Voss TS Maier AG Pearce JA Hansen DS Cowman AF Schofield L 《Cell host & microbe》2007,2(2):130-138
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions. 相似文献
4.
Ranjan R Chugh M Kumar S Singh S Kanodia S Hossain MJ Korde R Grover A Dhawan S Chauhan VS Reddy VS Mohmmed A Malhotra P 《Journal of proteome research》2011,10(2):680-691
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine. 相似文献
5.
Suman Mazumdar Suraksha Sachdeva Virander S. Chauhan Syed Shams Yazdani 《Bioprocess and biosystems engineering》2010,33(6):719-730
The C-terminal, 19-kDa domain of Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) is among the leading vaccine candidate for malaria due to its essential role in erythrocyte invasion by the parasite. We
designed a synthetic gene for optimal expression of recombinant PfMSP-119 in Escherichia coli and developed a scalable process to obtain high-quality PfMSP-119. The synthetic gene construct yielded a fourfold higher expression level of PfMSP-119 in comparison to the native gene construct. Optimization of cultivation conditions in the bioreactor indicated important
role of yeast extract and substrate feeding strategy for obtaining enhanced expression of soluble and correctly folded PfMSP-119. It was observed that the higher expression level of PfMSP-119 was essentially associated with the generation of higher level of incorrectly folded PfMSP-119. A simple purification procedure comprising metal affinity and ion exchange chromatography was developed to purify correctly
folded form of PfMSP-119 from cell lysate. Biochemical and biophysical characterization of purified PfMSP-119 suggested that it was highly pure, homogeneous, and correctly folded. 相似文献
6.
Mariuba LA Orlandi PP Medeiros M Holanda R Grava A Nogueira PA 《Memórias do Instituto Oswaldo Cruz》2008,103(6):522-527
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-beta-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients. 相似文献
7.
Barbier M Delahaye NF Fumoux F Rihet P 《Microbes and infection / Institut Pasteur》2008,10(6):673-679
Tumor necrosis factor (TNF)-related genes are thought to play a role in human malaria. TNF polymorphisms have been associated with severe malaria, mild malaria, and parasitemia. Lymphotoxin-alpha gene (LTA) that belongs to the TNF family is one such candidate gene. Here we report the family-based association analysis of a cis-regulatory lymphotoxin-alpha polymorphism with parasitemia in two independent populations living in Burkina Faso. Analysis of 199 subjects (34 families) living in an urban endemic area revealed the association of the low producing LTA+80A allele with reduced parasitemia. Furthermore, there was evidence of significant LTA+80-by-age and LTA+80-by-gender interactions. In another set of 318 residents (55 families) in a rural endemic area, we found both the association of the low producing LTA+80A allele with reduced parasitemia and LTA+80-by-age and LTA+80-by-gender interactions. This study suggests that LTA+80 polymorphism influences parasitemia and acts in an age- and gender-dependent manner. 相似文献
8.
Daniel C Hoessli Monique Poincelet Ramneek Gupta Subburaj Ilangumaran 《European journal of biochemistry》2003,270(2):366-375
In addition to the major carbohydrate moieties of the glycosylphosphatidylinositol (GPI) anchor, we report that Plasmodium falciparum merozoite surface protein 1 (MSP-1) bears O-GlcNAc modifications predominantly in beta-anomeric configuration, in both the C- and N-terminal portions of the protein. Subcellular fractionation of parasitized erythrocytes in the late trophozoite/schizont stage reveals that GPI-anchored C-terminal fragments of MSP-1 are recovered in Triton X-100 resistant, low-density membrane fractions. Our results suggest that O-GlcNAc-modified MSP-1 N-terminal fragments tend to localize within the parasitophorous vacuolar membrane while GPI-anchored MSP-1 C-terminal fragments associate with low-density, Triton X-100 resistant membrane domains (rafts), redistribute in the parasitized erythrocyte and are eventually shed as membrane vesicles that also contain the endogenous, GPI-linked CD59. 相似文献
9.
Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. 总被引:8,自引:1,他引:8
下载免费PDF全文

S. Kumar A. Yadava D. B. Keister J. H. Tian M. Ohl K. A. Perdue-Greenfield L. H. Miller D. C. Kaslow 《Molecular medicine (Cambridge, Mass.)》1995,1(3):325-332
BACKGROUND: The carboxy-terminus of the merozoite surface protein-1 (MSP1) of Plasmodium falciparum has been implicated as a target of protective immunity. MATERIALS AND METHODS: Two recombinant proteins from the carboxy-terminus of MSP1, the 42 kD fused to GST (bMSP1(42)) and the 19 kD (yMSP1(19)), were expressed in Escherichia coli and secreted from Saccharomyces cerevisiae, respectively. To determine if vaccination with these recombinant proteins induces protective immunity, we conducted a randomized, blinded vaccine trial in two species of Aotus monkeys, A. nancymai and A. vociferans. After three injections using Freund's adjuvant, the monkeys were challenged with the virulent Vietnam Oak Knoll (FVO) strain of P. falciparum. RESULTS: All three control monkeys required treatment by Day 19. Two of three monkeys vaccinated with bMSP1(42) required treatment by Day 17, whereas the third monkey controlled parasitemia for 28 days before requiring treatment. In contrast, both of the A. nancymai vaccinated with yMSP1(19) self-resolved an otherwise lethal infection. One of the two yMSP1(19)-vaccinated A. vociferans had a prolonged prepatent period of > 28 days before requiring treatment. No evidence of mutations were evident in the parasites recovered after the prolonged prepatent period. Sera from the two A. nancymai that self-cured had no detectable effect on in vitro invasion. CONCLUSIONS: Vaccination of A. nancymai with yMSP1(19) induced protective immune responses. The course of recrudescing parasitemias in protected monkeys suggested that immunity is not mediated by antibodies that block invasion. Our data indicate that vaccine trials with the highly adapted FVO strain of P. falciparum can be tested in A. nancymai and that MSP1(19) is a promising anti-blood-stage vaccine for human trials. 相似文献
10.
Intragenic recombination in the merozoite surface protein-1 gene (Msp-1) of Plasmodium falciparum is a major mechanism for allelic variation among natural parasite populations. The frequency of recombination depends on the intensity of transmission in the vector mosquito. In the present study, linkage disequilibrium between polymorphic 'loci' in the 5'- and 3'-regions of Msp-1 was examined in parasite populations from Brazilian Amazon and southern Vietnam and compared with that in a Thai population previously reported. The R2 test identified clusters of linkage disequilibria between the 5'- and 3'-regions, which are different among the three populations. However, the overall strength of linkage disequilibria was stronger in Brazil, a hypoendemic area, than in Vietnam and Thailand, mesoendemic areas, suggesting that linkage disequilibrium in Msp-1 inversely correlates with the intensity of transmission. To investigate possible mechanisms for linkage disequilibrium in Msp-1, we applied the Fst index, which measures the inter-population variance in allele frequency, to 'loci' in Msp-1 among the three populations. The Fst test identified two distinct regions with respect to inter-population allele frequency in Msp-1: one for highly divergent 'loci' in the 5'-region and the other for non-divergent 'loci' in the 3'-region. These results suggest that genetic drift is not the sole mechanism for linkage disequilibrium, but selection operates on 'loci' in the 3'-region in hypo- and mesoendemic areas of malaria. 相似文献
11.
By screening of a lambda gt11 library from Plasmodium falciparum genomic DNA with an antiserum raised against a 41-kDa protein band, which was shown to confer protective immunity to monkeys, the phage clone 41-3 was identified. The entire 41-3 gene was isolated, and its coding regions were determined by amplification and sequencing of 41-3 specific mRNA fragments. The 41-3 gene has a complex structure consisting of nine exons, encoding 375 amino acids in total with a calculated molecular weight of 43,400. Provided that the N-terminal hydrophobic residues function as signal sequence which is cleaved off, the molecular weight of the 41-3 protein decreases to 41,200 and could therefore be considered to be a component of the protective Mr = 41,000 protein band. Indeed, a 41-kDa protein could be detected by Western blot analysis using antisera raised against different recombinant expression products of the 41-3 gene. We furthermore demonstrate an alternative splice process for the mRNA precursor transcribed from the 41-3 gene to yield at least three distinct mRNAs. The major splice product carries all exons E1 to E9, whereas at least two minor 41-3 mRNA species can be identified which show deletions in the region between exons E5 and E7. The possible role of this differential splice process for the parasite is discussed. 相似文献
12.
Third form of the precursor to the major merozoite surface antigens of Plasmodium falciparum. 总被引:9,自引:1,他引:9
下载免费PDF全文

The precursor to the major merozoite surface antigens of Plasmodium falciparum appears to be encoded by two distinctly different (dimorphic) alleles able to undergo limited recombination. We analyzed 18 previously uncharacterized P. falciparum isolates to test the dimorphic model. All but one, a Thailand isolate, conformed to the dimorphic model, and this isolate conformed to the dimorphic model in all but variable block 2. Sequence analysis revealed that block 2 of isolate CSL2 was a third form. Hence, the dimorphic model is not strictly correct. Recombination between alleles was found only within two conserved blocks near the 5' end of the gene. 相似文献
13.
Anitha Mamillapalli Sujatha Sunil Suraksha S Diwan Surya K Sharma Prajesh K Tyagi Tridibes Adak Hema Joshi Pawan Malhotra 《Malaria journal》2007,6(1):1-7
A comparison was made between local malaria transmission and malaria imported by travellers to identify the utility of national and regional annual parasite index (API) in predicting malaria risk and its value in generating recommendations on malaria prophylaxis for travellers. Regional malaria transmission data was correlated with malaria acquired in Latin America and imported into the USA and nine European countries. Between 2000 and 2004, most countries reported declining malaria transmission. Highest API's in 2003/4 were in Surinam (287.4) Guyana (209.2) and French Guiana (147.4). The major source of travel associated malaria was Honduras, French Guiana, Guatemala, Mexico and Ecuador. During 2004 there were 6.3 million visits from the ten study countries and in 2005, 209 cases of malaria of which 22 (11%) were Plasmodium falciparum. The risk of adverse events are high and the benefit of avoided benign vivax malaria is very low under current policy, which may be causing more harm than benefit. 相似文献
14.
Qian F Reiter K Zhang Y Shimp RL Nguyen V Aebig JA Rausch KM Zhu D Lambert L Mullen GE Martin LB Long CA Miller LH Narum DL 《PloS one》2012,7(6):e36996
Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42)) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42) conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42) self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42) specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis. 相似文献
15.
Patarroyo MA Perez-Leal O Lopez Y Cortes J Rojas-Caraballo J Gomez A Moncada C Rosas J Patarroyo ME 《Biochemical and biophysical research communications》2005,337(3):853-859
Plasmodium vivax is currently the most widespread of the four parasite species causing malaria in humans around the world. It causes more than 75 million clinical episodes per year, mainly on the Asian and American continents. Identifying new antigens to be further tested as anti-P. vivax vaccine candidates has been greatly hampered by the difficulty of maintaining this parasite cultured in vitro. Taking into account that one of the most promising vaccine candidates against Plasmodium falciparum is the rhoptry-associated protein 2, we have identified the P. falciparum rhoptry-associated protein 2 homologue in P. vivax in the present study. This protein has 400 residues, having an N-terminal 21 amino-acid stretch compatible with a signal peptide and, as occurs with its falciparum homologue, it lacks repeat sequences. The protein is expressed in asexual stage P. vivax parasites and polyclonal sera raised against this protein recognised a 46 kDa band in parasite lysate in a Western blot assay. 相似文献
16.
The cysteine-rich C-terminal region of the merozoite surface protein-1, MSP-119, of Plasmodium falciparum has been the most promising vaccine target antigen to date, based on protective immunization studies with recombinant proteins in mice and monkey models. To be further developed as a vaccine candidate, it is essential to study its sequence heterogeneity in field isolates from diverse geographical areas. We have analyzed the DNA sequences encoding the C-terminal region of P. falciparum MSP-1 (1526-1744 aa, corresponding to part of the 16th and all of the 17th blocks) of 16 isolates from different regions in India. The PNG-MAD20 type of MSP-1 sequence predominated in this subcontinent. The MSP-119 region as usual was found to be highly conserved, with amino acid variations at four positions. Based on these variations, only three MSP-119 forms (Q-KNG, E-KNG, and E-TSG, a novel variant) were detected among these isolates. The two MSP-119 variant forms (Q-KNG and E-TSG) were expressed in Escherichia coli as histidine-tagged polypeptides and were characterized immunologically to corroborate the sequence data. 相似文献
17.
Levels of superoxide dismutase (SOD) activity and its properties in Plasmodium falciparum-infected erythrocytes, isolated parasites, and noninfected erythrocytes were studied. A higher specific activity was found in P. falciparum-infected erythrocytes compared to noninfected erythrocytes, resulting from the lower protein content of infected cells and not enzyme synthesis by the parasite, as the superoxide dismutase activity expressed per number of cells was decreased. Superoxide dismutase from noninfected erythrocytes and isolated P. falciparum parasites showed similar sensitivities to various inhibitors and had identical molecular weights and electrophoretic mobilities. These results support the hypothesis of uptake and use of the erythrocytic SOD enzyme by the parasite as a possible mechanism of defense against oxidative stress. 相似文献
18.
BACKGROUND: In areas of high-level, year-round malaria transmission, morbidity and mortality due to malaria decrease after the first two to three years of life. This reduction may be related to the development of cellular immunity to specific antigens expressed in the different life-cycle stages of Plasmodium falciparum. METHODS: A cross sectional study was conducted to evaluate T cell cytokine responses to the P. falciparum pre-erythrocytic antigen liver-stage antigen-1 (LSA-1) and the blood-stage antigen merozoite-surface protein-1 (MSP-1) in children under five years of age residing in a malaria holoendemic region of western Kenya. Interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) responses to the LSA-1 T3 peptide (aa 1813-1835) and the MSP-1 aa20-39 peptide were tested in 48 children. RESULTS: The proportion of children producing IFN-gamma to LSA-1 and to MSP-1 increased with age: in the 0-12, 13-24, 25-36 and 37-48 month age groups, zero, 11.1, 36.4 and 40% of children had IFN-gamma responses to LSA-1 (p = 0.019), and 10, 10, 27.7 and 40% of children had IFN-gamma responses to MSP-1 (p = 0.07), respectively. In contrast, the proportion of children producing IL-10 to LSA-1 and MSP-1 was similar in all age groups. CONCLUSION: The data suggest that development of IFN-gamma responses to LSA-1 and MSP-1 requires increased age and/or repeated exposure, whereas IL-10 responses to these antigens may occur at any age and with limited exposure. The data also demonstrate that by the age of 4 years, children in a malaria holoendemic area develop frequencies of IFN-gamma responses to LSA-1 and MSP-1 similar to those seen in adults in the area. 相似文献
19.
Sarma GN Nickel C Rahlfs S Fischer M Becker K Karplus PA 《Journal of molecular biology》2005,346(4):1021-1034
Plasmodium falciparum, the causative agent of malaria, is sensitive to oxidative stress and therefore the family of antioxidant enzymes, peroxiredoxins (Prxs) represent a target for antimalarial drug design. We present here the 1.8 A resolution crystal structure of P.falciparum antioxidant protein, PfAOP, a Prx that in terms of sequence groups with mammalian PrxV. The structure is compared to all 11 known Prx structures to gain maximal insight into its properties. We describe the common Prx fold and show that the dimeric PfAOP can be mechanistically categorized as a 1-Cys Prx. In the active site the peroxidatic Cys is over-oxidized to cysteine sulfonic acid, making this the first Prx structure seen in that state. Now with structures of Prxs in Cys-sulfenic, -sulfinic and -sulfonic acid oxidation states known, the structural steps involved in peroxide binding and over-oxidation are suggested. We also describe that PfAOP has an alpha-aneurism (a one residue insertion), a feature that appears characteristic of the PrxV-like group. In terms of crystallographic methodology, we enhance the information content of the model by identifying bound water sites based on peak electron densities, and we use that information to infer that the oxidized active site has suboptimal interactions that may influence catalysis. The dimerization interface of PfAOP is representative of an interface that is widespread among Prxs, and has sequence-dependent variation in geometry. The interface differences and the structural features (like the alpha-aneurism) may be used as markers to better classify Prxs and study their evolution. 相似文献
20.
Erythrocytic stages of the malaria parasite Plasmodium falciparum rely on glycolysis for their energy supply and it is unclear whether they obtain energy via mitochondrial respiration albeit enzymes of the tricarboxylic acid (TCA) cycle appear to be expressed in these parasite stages. Isocitrate dehydrogenase (ICDH) is either an integral part of the mitochondrial TCA cycle or is involved in providing NADPH for reductive reactions in the cell. The gene encoding P. falciparum ICDH was cloned and analysis of the deduced amino-acid sequence revealed that it possesses a putative mitochondrial targeting sequence. The protein is very similar to NADP+-dependent mitochondrial counterparts of higher eukaryotes but not Escherichia coli. Expression of full-length ICDH generated recombinant protein exclusively expressed in inclusion bodies but the removal of 27 N-terminal amino acids yielded appreciable amounts of soluble ICDH consistent with the prediction that these residues confer targeting of the native protein to the parasites' mitochondrion. Recombinant ICDH forms homodimers of 90 kDa and its activity is dependent on the bivalent metal ions Mg2+ or Mn2+ with apparent Km values of 13 micro m and 22 micro m, respectively. Plasmodium ICDH requires NADP+ as cofactor and no activity with NAD+ was detectable; the for NADP+ was found to be 90 micro m and that of d-isocitrate was determined to be 40 micro m. Incubation of P. falciparum under exogenous oxidative stress resulted in an up-regulation of ICDH mRNA and protein levels indicating that the enzyme is involved in mitochondrial redox control rather than energy metabolism of the parasites. 相似文献