首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas.  相似文献   

2.
Plasmodium falciparum: association with erythrocytic superoxide dismutase   总被引:1,自引:0,他引:1  
Levels of superoxide dismutase (SOD) activity and its properties in Plasmodium falciparum-infected erythrocytes, isolated parasites, and noninfected erythrocytes were studied. A higher specific activity was found in P. falciparum-infected erythrocytes compared to noninfected erythrocytes, resulting from the lower protein content of infected cells and not enzyme synthesis by the parasite, as the superoxide dismutase activity expressed per number of cells was decreased. Superoxide dismutase from noninfected erythrocytes and isolated P. falciparum parasites showed similar sensitivities to various inhibitors and had identical molecular weights and electrophoretic mobilities. These results support the hypothesis of uptake and use of the erythrocytic SOD enzyme by the parasite as a possible mechanism of defense against oxidative stress.  相似文献   

3.
N Sakihama  A Kaneko  T Hattori  K Tanabe 《Gene》2001,279(1):41-48
Intragenic recombination is a principal mechanism for the generation of allelic variation in the merozoite surface protein-1 gene (Msp-1) of the human malaria parasite Plasmodium falciparum. In the present study, linkage disequilibrium between the 5'- and 3'-polymorphic sites was analyzed to determine the frequency of recombination events in Msp-1 in parasite populations on four islands in Vanuatu, the southwestern Pacific, where malaria transmission is moderate and comparable to other mesoendemic areas. Of 141 isolates, whose 5'-haplotypes (Msp-1 blocks 2-6) were determined by PCR-based typing, 138 were successfully sequenced for the 3'-polymorphism (block 17). A total of four distinct 5'-haplotypes and three distinct 3'-sequence types were identified with apparently different frequency distribution among islands. The number of 5'-haplotypes in each island was one to four, far smaller than in other previously studied geographic areas (ten to 21). Associations between the 5'- and 3'-polymorphisms (here termed Msp-1 gene types) were subjected to the R(2) linkage disequilibrium test. The test revealed complete or very strong linkage disequilibrium in all four islands. Mixed infection was unusually rare (2.1%) and the mean number of Msp-1 alleles per person was nearly 1.0. The heterozygosity of the Msp-1 gene type calculated for each island (h=0.41-0.65) was significantly lower than that in other areas of comparable endemicity (h=0.81-0.89) (P<0.01). These results indicate that recombination events in Msp-1 would be extremely limited in Vanuatu, and stress that the frequency of recombination in Msp-1 is determined by not only the intensity of malaria transmission but the frequency of mixed clone infections, the mean number of clones per person and a repertoire of clones in a local area.  相似文献   

4.
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.  相似文献   

5.
The C-terminal, 19-kDa domain of Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) is among the leading vaccine candidate for malaria due to its essential role in erythrocyte invasion by the parasite. We designed a synthetic gene for optimal expression of recombinant PfMSP-119 in Escherichia coli and developed a scalable process to obtain high-quality PfMSP-119. The synthetic gene construct yielded a fourfold higher expression level of PfMSP-119 in comparison to the native gene construct. Optimization of cultivation conditions in the bioreactor indicated important role of yeast extract and substrate feeding strategy for obtaining enhanced expression of soluble and correctly folded PfMSP-119. It was observed that the higher expression level of PfMSP-119 was essentially associated with the generation of higher level of incorrectly folded PfMSP-119. A simple purification procedure comprising metal affinity and ion exchange chromatography was developed to purify correctly folded form of PfMSP-119 from cell lysate. Biochemical and biophysical characterization of purified PfMSP-119 suggested that it was highly pure, homogeneous, and correctly folded.  相似文献   

6.
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.  相似文献   

7.
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-beta-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.  相似文献   

8.
In addition to the major carbohydrate moieties of the glycosylphosphatidylinositol (GPI) anchor, we report that Plasmodium falciparum merozoite surface protein 1 (MSP-1) bears O-GlcNAc modifications predominantly in beta-anomeric configuration, in both the C- and N-terminal portions of the protein. Subcellular fractionation of parasitized erythrocytes in the late trophozoite/schizont stage reveals that GPI-anchored C-terminal fragments of MSP-1 are recovered in Triton X-100 resistant, low-density membrane fractions. Our results suggest that O-GlcNAc-modified MSP-1 N-terminal fragments tend to localize within the parasitophorous vacuolar membrane while GPI-anchored MSP-1 C-terminal fragments associate with low-density, Triton X-100 resistant membrane domains (rafts), redistribute in the parasitized erythrocyte and are eventually shed as membrane vesicles that also contain the endogenous, GPI-linked CD59.  相似文献   

9.
Tumor necrosis factor (TNF)-related genes are thought to play a role in human malaria. TNF polymorphisms have been associated with severe malaria, mild malaria, and parasitemia. Lymphotoxin-alpha gene (LTA) that belongs to the TNF family is one such candidate gene. Here we report the family-based association analysis of a cis-regulatory lymphotoxin-alpha polymorphism with parasitemia in two independent populations living in Burkina Faso. Analysis of 199 subjects (34 families) living in an urban endemic area revealed the association of the low producing LTA+80A allele with reduced parasitemia. Furthermore, there was evidence of significant LTA+80-by-age and LTA+80-by-gender interactions. In another set of 318 residents (55 families) in a rural endemic area, we found both the association of the low producing LTA+80A allele with reduced parasitemia and LTA+80-by-age and LTA+80-by-gender interactions. This study suggests that LTA+80 polymorphism influences parasitemia and acts in an age- and gender-dependent manner.  相似文献   

10.
BACKGROUND: The carboxy-terminus of the merozoite surface protein-1 (MSP1) of Plasmodium falciparum has been implicated as a target of protective immunity. MATERIALS AND METHODS: Two recombinant proteins from the carboxy-terminus of MSP1, the 42 kD fused to GST (bMSP1(42)) and the 19 kD (yMSP1(19)), were expressed in Escherichia coli and secreted from Saccharomyces cerevisiae, respectively. To determine if vaccination with these recombinant proteins induces protective immunity, we conducted a randomized, blinded vaccine trial in two species of Aotus monkeys, A. nancymai and A. vociferans. After three injections using Freund's adjuvant, the monkeys were challenged with the virulent Vietnam Oak Knoll (FVO) strain of P. falciparum. RESULTS: All three control monkeys required treatment by Day 19. Two of three monkeys vaccinated with bMSP1(42) required treatment by Day 17, whereas the third monkey controlled parasitemia for 28 days before requiring treatment. In contrast, both of the A. nancymai vaccinated with yMSP1(19) self-resolved an otherwise lethal infection. One of the two yMSP1(19)-vaccinated A. vociferans had a prolonged prepatent period of > 28 days before requiring treatment. No evidence of mutations were evident in the parasites recovered after the prolonged prepatent period. Sera from the two A. nancymai that self-cured had no detectable effect on in vitro invasion. CONCLUSIONS: Vaccination of A. nancymai with yMSP1(19) induced protective immune responses. The course of recrudescing parasitemias in protected monkeys suggested that immunity is not mediated by antibodies that block invasion. Our data indicate that vaccine trials with the highly adapted FVO strain of P. falciparum can be tested in A. nancymai and that MSP1(19) is a promising anti-blood-stage vaccine for human trials.  相似文献   

11.
Intragenic recombination in the merozoite surface protein-1 gene (Msp-1) of Plasmodium falciparum is a major mechanism for allelic variation among natural parasite populations. The frequency of recombination depends on the intensity of transmission in the vector mosquito. In the present study, linkage disequilibrium between polymorphic 'loci' in the 5'- and 3'-regions of Msp-1 was examined in parasite populations from Brazilian Amazon and southern Vietnam and compared with that in a Thai population previously reported. The R2 test identified clusters of linkage disequilibria between the 5'- and 3'-regions, which are different among the three populations. However, the overall strength of linkage disequilibria was stronger in Brazil, a hypoendemic area, than in Vietnam and Thailand, mesoendemic areas, suggesting that linkage disequilibrium in Msp-1 inversely correlates with the intensity of transmission. To investigate possible mechanisms for linkage disequilibrium in Msp-1, we applied the Fst index, which measures the inter-population variance in allele frequency, to 'loci' in Msp-1 among the three populations. The Fst test identified two distinct regions with respect to inter-population allele frequency in Msp-1: one for highly divergent 'loci' in the 5'-region and the other for non-divergent 'loci' in the 3'-region. These results suggest that genetic drift is not the sole mechanism for linkage disequilibrium, but selection operates on 'loci' in the 3'-region in hypo- and mesoendemic areas of malaria.  相似文献   

12.
Mature red blood cells have no internal trafficking machinery, so the intraerythrocytic malaria parasite, Plasmodium falciparum , establishes its own transport system to export virulence factors to the red blood cell surface. Maurer's clefts are parasite-derived membranous structures that form an important component of this exported secretory system. A protein with sequence similarity to a Golgi tethering protein, referred to as ring-exported protein-1 (REX1), is associated with Maurer's clefts. A REX1–GFP chimera is trafficked to the Maurer's clefts and preferentially associates with the edges of these structures, as well as with vesicle-like structures and with stalk-like extensions that are involved in tethering the Maurer's clefts to other membranes. We have generated transfected P. falciparum expressing REX1 truncations or deletion. Electron microscopy reveals that the Maurer's clefts of REX1 truncation mutants have stacked cisternae, while the 3D7 parent line has unstacked Maurer's clefts. D10 parasites, which have lost the right end of chromosome 9, including the rex1 gene, also display Maurer's clefts with stacked cisternae. Expression of full-length REX1–GFP in D10 parasites restores the 3D7-type unstacked Maurer's cleft phenotype. These studies reveal the importance of the REX1 protein in determining the ultrastructure of the Maurer's cleft system.  相似文献   

13.
An altered version of peptide deformylase from Plasmodium falciparum (PfPDF), the organism that causes the most devastating form of malaria, has been cocrystallized with a synthesized inhibitor that has submicromolar affinity for its target protein. The structure is solved at 2.2 A resolution, an improvement over the 2.8 A resolution achieved during the structural determination of unliganded PfPDF. This represents the successful outcome of modifying the protein construct in order to overcome adverse crystal contacts and other problems encountered in the study of unliganded PfPDF. Two molecules of PfPDF are found in the asymmetric unit of the current structure. The active site of each monomer of PfPDF is occupied by a proteolyzed fragment of the tripeptide-like inhibitor. Unexpectedly, each PfPDF subunit is associated with two nearly complete molecules of the inhibitor, found at a protein-protein interface. This is the first structure of a eukaryotic PDF protein, a potential drug target, in complex with a ligand.  相似文献   

14.
By screening of a lambda gt11 library from Plasmodium falciparum genomic DNA with an antiserum raised against a 41-kDa protein band, which was shown to confer protective immunity to monkeys, the phage clone 41-3 was identified. The entire 41-3 gene was isolated, and its coding regions were determined by amplification and sequencing of 41-3 specific mRNA fragments. The 41-3 gene has a complex structure consisting of nine exons, encoding 375 amino acids in total with a calculated molecular weight of 43,400. Provided that the N-terminal hydrophobic residues function as signal sequence which is cleaved off, the molecular weight of the 41-3 protein decreases to 41,200 and could therefore be considered to be a component of the protective Mr = 41,000 protein band. Indeed, a 41-kDa protein could be detected by Western blot analysis using antisera raised against different recombinant expression products of the 41-3 gene. We furthermore demonstrate an alternative splice process for the mRNA precursor transcribed from the 41-3 gene to yield at least three distinct mRNAs. The major splice product carries all exons E1 to E9, whereas at least two minor 41-3 mRNA species can be identified which show deletions in the region between exons E5 and E7. The possible role of this differential splice process for the parasite is discussed.  相似文献   

15.
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand‐receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in‐situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.  相似文献   

16.
The precursor to the major merozoite surface antigens of Plasmodium falciparum appears to be encoded by two distinctly different (dimorphic) alleles able to undergo limited recombination. We analyzed 18 previously uncharacterized P. falciparum isolates to test the dimorphic model. All but one, a Thailand isolate, conformed to the dimorphic model, and this isolate conformed to the dimorphic model in all but variable block 2. Sequence analysis revealed that block 2 of isolate CSL2 was a third form. Hence, the dimorphic model is not strictly correct. Recombination between alleles was found only within two conserved blocks near the 5' end of the gene.  相似文献   

17.
Surface proteins from Plasmodium falciparum are important malaria vaccine targets. However, the surface proteins previously identified are highly variant and difficult to study. We used tandem mass spectrometry to characterize the variant antigens (Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)) expressed on the surface of malaria-infected erythrocytes that bind to chondroitin sulfate A (CSA) in the placenta. Whereas PfEMP1 variants previously implicated as CSA ligands were detected, in unselected parasites four novel variants were detected in CSA-binding or placental parasites but not in unselected parasites. These novel PfEMP1 variants require further study to confirm whether they play a role in placental malaria.  相似文献   

18.
Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42)) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42) conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42) self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42) specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.  相似文献   

19.
A comparison was made between local malaria transmission and malaria imported by travellers to identify the utility of national and regional annual parasite index (API) in predicting malaria risk and its value in generating recommendations on malaria prophylaxis for travellers. Regional malaria transmission data was correlated with malaria acquired in Latin America and imported into the USA and nine European countries. Between 2000 and 2004, most countries reported declining malaria transmission. Highest API's in 2003/4 were in Surinam (287.4) Guyana (209.2) and French Guiana (147.4). The major source of travel associated malaria was Honduras, French Guiana, Guatemala, Mexico and Ecuador. During 2004 there were 6.3 million visits from the ten study countries and in 2005, 209 cases of malaria of which 22 (11%) were Plasmodium falciparum. The risk of adverse events are high and the benefit of avoided benign vivax malaria is very low under current policy, which may be causing more harm than benefit.  相似文献   

20.
The cysteine-rich C-terminal region of the merozoite surface protein-1, MSP-119, of Plasmodium falciparum has been the most promising vaccine target antigen to date, based on protective immunization studies with recombinant proteins in mice and monkey models. To be further developed as a vaccine candidate, it is essential to study its sequence heterogeneity in field isolates from diverse geographical areas. We have analyzed the DNA sequences encoding the C-terminal region of P. falciparum MSP-1 (1526-1744 aa, corresponding to part of the 16th and all of the 17th blocks) of 16 isolates from different regions in India. The PNG-MAD20 type of MSP-1 sequence predominated in this subcontinent. The MSP-119 region as usual was found to be highly conserved, with amino acid variations at four positions. Based on these variations, only three MSP-119 forms (Q-KNG, E-KNG, and E-TSG, a novel variant) were detected among these isolates. The two MSP-119 variant forms (Q-KNG and E-TSG) were expressed in Escherichia coli as histidine-tagged polypeptides and were characterized immunologically to corroborate the sequence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号