共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitous use of poly(ethylene glycol) in the biomaterials field has also boosted the research activity in the chemical derivatization of this polymer. We focused our interest on the preparation of tailor-made poly(ethylene glycol)-based structures and on the study of structure-activity relationships for its functionalization, as preliminary steps for the preparation of smart functional materials. More specifically, amphiphilic and cationic block copolymers were prepared for prospective use in the preparation of self-assembled carriers, and Michael-type addition of thiols onto acrylates was studied as a model for end-group reaction leading to hydrogel formation. 相似文献
2.
Poly(5-chlorocytidylic acid) 总被引:2,自引:0,他引:2
3.
Poly(5-hydroxycytidylic acid) 总被引:4,自引:0,他引:4
4.
Poly(butylene succinate) and its copolymers: research, development and industrialization 总被引:2,自引:0,他引:2
Poly(butylene succinate) (PBS) and its copolymers are a family of biodegradable polymers with excellent biodegradability, thermoplastic processability and balanced mechanical properties. In this article, production of the monomers succinic acid and butanediol, synthesis, processing and properties of PBS and its copolymers are reviewed. The physical properties and biodegradation rate of PBS materials can be varied in a wide range through copolymerization with different types and various contents of monomers. PBS has a wide temperature window for thermoplastic processing, which makes the resin suitable for extrusion, injection molding, thermoforming and film blowing. Finally, we summarized industrialization and applications of PBS. 相似文献
5.
6.
Evidence that all messenger RNA molecules (except histone messenger RNA) contain Poly (A) sequences and that the Poly(A) has a nuclear function 总被引:52,自引:0,他引:52
The appearance of newly formed messenger RNA in polyribosomes of HeLa cells Is inhibited by over 85% by 3′deoxyadenosine (Penman, Rosbash &; Penman, 1970) probably due to the failure of normal attachment of poly(A) to heterogeneous nuclear RNA in the presence of this drug (Darnell, Philipson, Wall &; Adesnik, 1971). Results presented here show that the labeled RNA which does reach polysomes in the presence of 3′deoxyadenosine can be characterized as messenger RNA which contains smaller poly(A) segments than normal messenger RNA. The results of the present experiments suggest that all, or almost all, HeLa cell messenger RNA molecules (except for histone messenger RNA) are derived from nuclear RNA molecules which contain poly (A). 相似文献
7.
We attempted to find Escherichia coli proteins which preferentially bind to a curved DNA sequence even in the presence of an excess amount of a non-curved DNA sequence as a competitor, mainly by means of a DNA-binding gel retardation assay. Since the two sequences used had nearly the same nucleotide compositions, including consecutive dA5 stretches, we reasoned that this strategy would allow us to identify proteins which preferentially recognize an overall DNA curvature. We purified such a protein from E. coli. Its preferential binding to the curved DNA was found to be inhibited by distamycin, which removes the curvature from appropriate DNA sequences. The purified protein was identified as the E. coli nucleoid protein, H-NS. 相似文献
8.
Electrostatic calculations and model-building suggest that DNA bound to CAP is sharply bent 总被引:20,自引:0,他引:20
Two observations suggest that DNA, upon binding to E. coli catabolite gene activator protein (CAP), is sharply bent by a total angle of at least 100-150 degrees: (1) The electrostatic potential field of CAP shows regions of positive potential that form a ramp on 3 sides of the protein. (2) The DNA binding site size as determined by DNA ethylation interference with binding, (Majors: "Control of the E. coli Lac Operon at the Molecular Level." Ph.D. Thesis, Harvard University, Cambridge, 1977) and by relative affinities of DNA fragments of various lengths (Liu-Johnson et al.: Cell 47:995-1005, 1986) requires severe bending of the DNA to maintain its favorable electrostatic contact with the protein. 相似文献
9.
Polypeptide/polysaccharide graft copolymers poly(L-lysine)-graft-chitosan (PLL-g-Chi) were prepared by ring-opening polymerization (ROP) of epsilon-benzoxycarbonyl L-lysine N-carboxyanhydrides (Z-L-lysine NCA) in the presence of 6-O-triphenylmethyl chitosan. The PLL-g-Chi copolymers were thoroughly characterized by 1H NMR, 13C NMR, Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). The number-average degree of polymerization of PLL grafted onto the chitosan backbone could be adjusted by controlling the feed ratio of NCA to 6-O-triphenylmethyl chitosan. The particle size of the complexes formed from the copolymer and calf thymus DNA was measured by dynamic light scattering (DLS). It was found in the range of 120 approximately 340 nm. The gel retardation electrophoresis showed that the PLL-g-Chi copolymers possessed better plasmid DNA-binding ability than chitosan. The gene transfection effect in HEK 293T cells of the copolymers was evaluated, and the results showed that the gene transfection ability of the copolymer was better than that of chitosan and was dependent on the PLL grafting ratio. The PLL-g-Chi copolymers could be used as effective gene delivery vectors. 相似文献
10.
Poly(glutamic acid) for biomedical applications. 总被引:4,自引:0,他引:4
Paclitaxel is a widely used anti-cancer agent. Conjugates of paclitaxel with poly(glutamic acid) have shown great promise in preclinical trials, and clinical trials are now underway. Preclinical data suggest that more paclitaxel is preferentially delivered to tumor sites vs. nonconjugated paclitaxel. When poly(glutamic acid) is conjugated to other families of cancer drugs, similar improvements in effectiveness and reduced toxicity are observed. Optimization of poly(glutamic acid) for use in drug delivery applications is a key step in making this technology viable. 相似文献
11.
Background
Bacteria or cells receive many signals from their environment and from other organisms. In order to process this large amount of information, Systems Biology shows that a central role is played by regulatory networks composed of genes and proteins. The objective of this paper is to present and to discuss simple regulatory network motifs having the property to maximize their responses under time-periodic stimulations. In elucidating the mechanisms underlying these responses through simple networks the goal is to pinpoint general principles which optimize the oscillatory responses of molecular networks. 相似文献12.
The folding of randomly coiled poly(L -glutamic acid) to the helical state has been studied in N-methylacetamide by titration methods. Since this solvent would be expected to form amide-peptide group hydrogen bonds with the unfolded form of the polymer, to a first approximation no helix stabilization could come from intrapolymer hydrogen bonds. The titration data, collected from 30 to 70°C yield the following values per residue for the thermodynamic parameters governing the coil-helix reaction for the uncharged polymer: ΔG30°C°, ?1. 9 ± 0.1 kcal; Δ H°, 0 ± 0.1 kcal; ΔS30°C°, 6.3 ± 0.6 eu. In N-methyl acetamide, the helix is an order of magnitude more stable than in water, and this stabilization appears to be entirely the result of the entropy gained by solvent molecules which are released from the polymer upon folding. 相似文献
13.
Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C, U) templates 总被引:4,自引:0,他引:4
Poly(C, U) random copolymer templates direct the oligomerization of 2-MeImpG and 2-MeImpA, resulting in the production of a variety of oligo/(G,A)s. The efficiency of monomer incorporation into newly synthesized oligomers is greater for 2-MeImpG than for 2-MeImpA, and decreases for both monomers as the uracil content of the template increases. The relatively poor incorporation of adenine is partly due to an intrinsically less efficient incorporation reaction, and partly due to the masking of uracil sites by G X U non-complementary pairing. The efficiency of adenine incorporation can be improved by decreasing the concentration of 2-MeImpG and increasing the concentration of 2-MeImpA in the reaction mixture. The oligomeric product distribution can be characterized in detail using high-pressure liquid chromatography on an RPC-5 column. Oligomers are separated on the basis of chain length, base composition, and phospho-diester-linkage isomerism. The 3'----5' regiospecificity of monomer addition to template-bound oligomers is lower for 2-MeImpA than for 2-MeImpG. The presence of an adenine residue at the 2'(3') terminus of the acceptor strand lowers the regiospecificity of 2-MeImpA addition even further. 相似文献
14.
Poly(C,A) random copolymer templates direct the oligomerization of 2-MeImpG (2-MeImpX is the 5'-phospho-2-methylimidazolide of the nucleoside X) and 2-MeImpU, resulting in the production of a variety of oligo (G,U)s. This reaction is less efficient than comparable reactions involving poly(C,U) or poly(C,G) templates. The efficiency of monomer incorporation into newly synthesized oligomers is lower for 2-MeImpU than 2-MeImpG, and cannot be improved by increasing the concentration of 2-MeImpU relative to 2-MeImpG. This suggests that RNA templates containing runs of consecutive adenine residues would not be suitable for use in a chemical self-replicating system. The distribution of oligomeric products can be characterized in detail using high-pressure liquid chromatography on an RPC-5 column. Oligomers are separated on the basis of chain length, base composition, and phosphodiester-linkage isomerism. Oligomers up to about the 13-mer, with base composition Gn, Gn-1, U, and Gn-2, U2, have been identified. 相似文献
15.
Non-enzymic template-directed synthesis on RNA random copolymers. Poly(C, G) templates 总被引:2,自引:0,他引:2
Poly(C, G) random copolymer templates direct the oligomerization of 2-Me-ImpG and 2-MeImpC, resulting in the production of a variety of oligo(G, C)s. The efficiency of monomer incorporation into newly synthesized oligomers is greater for 2-MeImpG than for 2-MeImpC, and decreases for both monomers as the guanine content of the template increases. The relatively low efficiency of oligomerization on guanine-rich templates is largely a consequence of intra- and intermolecular template self-structure. The problem of template self-structure is clearly a major obstacle to the development of a system of self-replicating polynucleotides. The distribution of oligomeric products can be characterized in detail using high-pressure liquid chromatography on an RPC-5 column. Oligomers are separated on the basis of chain length, base composition and phosphodiester-linkage isomerism. Oligomers up to about the 12-mer, with base composition Gn, Gn-1C and Gn-2C2, have been identified. The 3' to 5' regiospecificity of the products is high, particularly for oligomers with base composition Gn. 相似文献
16.
17.
Biocompatible, biodegradable polyionic micelles were used as a building component for layer-by-layer (LbL) assembly that can
produce drug-loaded nanolayers. To prepare the polycationic micelles, poly(lactic-co-glycolic acid)-b-poly(l-lysine) [PLGA-b-P(Lys)] copolymers were synthesized. In an aqueous phase, PLGA-b-P(Lys) copolymers were self-assembled to form spherical micelles with the inner core of poly(lactic-co-glycolic acid) (PLGA)
and the cationic outer shell of P(Lys). The micelles were characterized by zeta potential, dynamic light scattering, and nuclear
magnetic resonance. PLGA-b-P(Lys) micelles showed the positive zeta potential values in a broad range of pH (3–11), indicating the high stability of
the polyionic micelles with the outer shell of positive charges. Cationic polymeric micelles were coated on the surface via
electrostatic interactions with the oppositely charged polyelectrolyte, poly(sodium 4-styrenesulfonate). Formation of multiple
micelle layers was monitored using quartz crystal microbalance in situ, and the surface topology of the layers was characterized by atomic force microscopy ex situ, as the number of micelle layer was increased. The multiple micelle layers were stable, and the thickness of micelle layer
grew as the number of LbL coating increased. The approach described in this work can be used for the development of the biocompatible,
biodegradable, drug-loaded bioactive nanocoatings. 相似文献
18.
Jasleen Kaur Daljit Singh Minh Tri Luu Ali Abbas Shelley F. J. Wickham 《Biophysical reviews》2018,10(5):1283-1293
Structural DNA nanotechnology, in which Watson-Crick base pairing drives the formation of self-assembling nanostructures, has rapidly expanded in complexity and functionality since its inception in 1981. DNA nanostructures can now be made in arbitrary three-dimensional shapes and used to scaffold many other functional molecules such as proteins, metallic nanoparticles, polymers, fluorescent dyes and small molecules. In parallel, the field of dynamic DNA nanotechnology has built DNA circuits, motors and switches. More recently, these two areas have begun to merge—to produce switchable DNA nanostructures, which change state in response to their environment. In this review, we summarise switchable DNA nanostructures into two major classes based on response type: molecular actuation triggered by local chemical changes such as pH or concentration and external actuation driven by light, electric or magnetic fields. While molecular actuation has been well explored, external actuation of DNA nanostructures is a relatively new area that allows for the remote control of nanoscale devices. We discuss recent applications for DNA nanostructures where switching is used to perform specific functions—such as opening a capsule to deliver a molecular payload to a target cell. We then discuss challenges and future directions towards achieving synthetic nanomachines with complexity on the level of the protein machinery in living cells. 相似文献
19.
Poly(gamma-glutamic acid) (gamma-PGA), an extracellular polymeric substance (EPS) synthesized by Bacillus species, was explored to study its interaction with the basic brown 1 dye by conducting a systematic batch adsorption study as affected by two critical parameters, temperature and pH. Adsorption isotherms were closely predicted by Temkin equation among the eight isotherm models tested. The rate of adsorption was very rapid attaining equilibrium within 60 min and the kinetics were well described by both modified second-order and pseudo second-order models. Boyd's ion exchange model, which assumes exchanges of ions to be a chemical phenomenon, also fitted the kinetic data precisely. The adsorption rate increased with increasing solution temperature, however, a reversed trend was observed for the adsorption capacity. Changes in enthalpy, entropy and free energy values revealed dye adsorption by gamma-PGA to be an exothermic and spontaneous process involving no structural modification in gamma-PGA, whereas the activation energy of 37.21 kJ/mol indicated dye adsorption to be reaction-controlled. Following a rise in solution pH, the dye adsorption increased and reached a plateau at pH 5, while the maximum release of dye from spent gamma-PGA occurred at pH 1.5, suggesting a possible ion exchange mechanism. Ion exchange adsorption of basic dyes by gamma-PGA was further proved by the presence of two new IR bands at approximately 1600 and 1405.72 cm(-1), representing asymmetric and symmetric stretching vibration of carboxylate anion, for dye-treated gamma-PGA. 相似文献
20.
In vitro selection was used to isolate five classes of allosteric hammerhead ribozymes that are triggered by binding to certain divalent metal ion effectors. Each of these ribozyme classes are similarly activated by Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+, but their allosteric binding sites reject other divalent metals such as Mg2+, Ca2+ and Sr2+. Through a more comprehensive survey of cations, it was determined that some metal ions (Be2+, Fe3+, Al3+, Ru2+ and Dy2+) are extraordinarily disruptive to the RNA structure and function. Two classes of RNAs examined in greater detail make use of conserved nucleotides within the large internal bulges to form critical structures for allosteric function. One of these classes exhibits a metal-dependent increase in rate constant that indicates a requirement for the binding of two cation effectors. Additional findings suggest that, although complex allosteric functions can be exhibited by small RNAs, larger RNA molecules will probably be required to form binding pockets that are uniquely selective for individual cation effectors. 相似文献