首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic changes conferring adaptation to a new environment may induce a fitness cost in the previous environment. Although this prediction has been verified in laboratory conditions, few studies have tried to document this cost directly in natural populations. Here, we evaluated the pleiotropic effects of insecticide resistance on putative fitness components of the mosquito Culex pipiens. Experiments using different larval densities were performed during the summer in two natural breeding sites. Two loci that possess alleles conferring organophosphate (OP) resistance were considered: ace-1 coding for an acetylcholinesterase (AChE1, the OP target) and Ester, a 'super locus" including two closely linked loci coding for esterases A and B. Resistance ace-1 alleles coding for a modified AChE1 were associated with a longer development time and shorter wing length. The pleiotropic effects of two resistance alleles Ester1 and Ester4 coding for the overproduced esterases A1 and A4-B4, respectively, were more variable. Both A1 and A4-B4 reduced wing length, although only A1 was associated with a longer preimaginal stage. The fluctuating asymmetry (FA) of the wing did not respond to the presence or to the interaction of resistance alleles at the two loci at any of the density levels tested. Conversely, the FA of one wing section decreased when larval density increased. This may be the consequence of selection against less developmentally stable individuals. The results are discussed in relation to the local evolution of insecticide resistance genes.  相似文献   

2.
qnr is an important and recently emerged plasmidic fluoroquinolone resistance gene. Numerous qnr alleles have been detected, but previous studies have suggested that there is little functional divergence among them. We performed phylogenetic analysis of representative qnr alleles and examined the phylogeny for the occurrence of positive selection (d(N)/d(S)). Positive selection rarely occurred near the tips of the tree, which confirms that the evolution of qnr alleles has not been driven by functional divergence. Interestingly, we also found evidence of recombination events among qnr alleles that may lack any functional relevance but contribute to the sequence variation of qnr alleles. These findings suggest that drift and recombination may be more important contributors to qnr sequence divergence than selection for new functions.  相似文献   

3.
4.
In most parts of China, mosquitoes have been subjected to organophosphate (OP) insecticide treatments since the mid-1960s, and resistance gene monitoring in the Culex pipiens complex (Diptera: Culicidae) started in only a few locations from the end of the 1980s. Many resistant alleles at the Ester locus have been found in field populations, including those commonly found around the world ( Ester B1 and Ester 2 ), and those endemic to China ( Ester B6 , Ester B7 , Ester 8 , and Ester 9 ). This situation is atypical, and may represent a complex situation for the evolution of insecticide resistance genes in China. To increase our understanding of the Chinese situation and our ability to manage resistance in the C. pipiens complex, a large study was performed. Twenty field populations were sampled from Beijing to Guangzhou. Bioassays with five insecticides (dichlorvos, parathion, chlorpyrifos, 2-sec-butylphenyl methyl carbamate, and propoxur) disclosed resistance levels variable according to the geographic origin, and up to 85-fold for dichlorvos. Six overproduced esterases were identified, including two that have not been previously described. Most of them were found in all samples, although at variable frequencies, suggesting variable selection or a transient situation, e.g., each one was recently restricted to a particular geographic area. The results are discussed in the context of recent alterations to insecticide campaigns, and of the evolution of resistance genes in Chinese C. pipiens populations.  相似文献   

5.
How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs.  相似文献   

6.
Evolution is a fundamentally population level process in which variation, drift and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time using models like Brownian motion, stabilizing selection (Ornstein–Uhlenbeck) and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are homogeneous. Spatial processes such as dispersal, gene flow and geographical range changes can produce patterns of trait evolution that do not fit the expectations of standard models, even when evolution at the local‐population level is governed by drift or a typical OU model of selection. The basic properties of population level processes (variation, drift, selection and population size) are reviewed and the relationship between their spatial and temporal dynamics is discussed. Typical evolutionary models used in palaeontology incorporate the temporal component of these dynamics, but not the spatial. Range expansions and contractions introduce rate variability into drift processes, range expansion under a drift model can drive directional change in trait evolution, and spatial selection gradients can create spatial variation in traits that can produce long‐term directional trends and punctuation events depending on the balance between selection strength, gene flow, extirpation probability and model of speciation. Using computational modelling that spatial processes can create evolutionary outcomes that depart from basic population‐level notions from these standard macroevolutionary models.  相似文献   

7.
We address the controversy over the processes causing divergence during speciation. Host races of the fruit fly Tephritis conura attack the thistles Cirsium oleraceum and Cirsium heterophyllum. By studying the genetic divergence of T. conura in areas where host plants are sympatric, parapatric and allopatric, we assessed the contribution of geography in driving host-race divergence. We also evaluated the relative importance of genetic drift and selection in the diversification process, by analysis of the geographic distribution of genetic variation. Host races were significantly diverged at five out of 13 polymorphic allozyme loci. Variance at two loci, Hex and Pep D, was almost exclusively attributable to host-plant affiliation in all geographic settings. However, Hex was significantly more differentiated between host races in sympatry/parapatry than in allopatry. This result might be explained by selection against hybridisation or against incorrect host choice in contact areas. Linkage disequilibrium tests suggest the latter: gene flow in contact areas may occur from males of the host-race C. heterophyllum to females of the host-race C. oleraceum, whereas incorrect oviposition events were never observed. The distinctive patterns of genetic differentiation at the two highly differentiated loci implicate the action of selection (acting directly or on linked loci) rather than genetic drift. Despite their restricted interactions in sympatry, we conclude that host races are stable and that the major diversification process took place before species arrived in today's geographical settings.  相似文献   

8.
Esterase gene amplification at the Ester superlocus provides organophosphate resistance in the mosquito Culex pipiens (L.). In this study we explored the possibility of recombination between two amplified esterase alleles, thus generating a composite amplified allele. To do that, females heterozygous for two distinct amplified alleles (Ester(2) and Ester(4)) were crossed with males homozygous for a third resistance allele (Ester(8)). Among analyzed offspring, one recombinant composite allele (Ester(2-4)) was detected, providing a rate of recombination of approximately 0.2%. This is the first report of a recombination between two distinct amplified esterase alleles. This phenomenon renders the predictability of allele evolution considerably more complex than was previously thought.  相似文献   

9.
Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen‐mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.  相似文献   

10.
Population genetics of insecticide resistance in the mosquito Culex pipiens   总被引:2,自引:0,他引:2  
Thirty years of control of the mosquito Culex pipiens using organophosphate insecticides (OP) has selected for OP-resistance alleles on a world-wide scale. As reviewed here, studies at the levels of gene and population allow identification of the main forces driving this process of adaptation. Three loci are involved in OP-resistance in C. pipiens. For two of these, adaptive mutations were found to be rare events, such that the ubiquitous distribution of certain resistance alleles could only be explained as deriving from a single origin by mutation followed by extensive migration. Population structure analyses confirmed that long-distance migration is frequent. Thus, different resistance alleles could accumulate and compete within populations soon after their origin by mutation. The different selection pressures acting on these alleles, i.e. their selective advantage in the presence of OP and their disadvantage (resistance cost) in absence of OP, were also analysed. Substantial differences in resistance cost among alleles present within the Mediterranean area were discovered. Long-term surveys of Mediterranean populations confirmed the pivotal importance of resistance cost in shaping the evolution of this adaptive polymorphism. Some hypotheses on the functional links between the nature of the initial mutation events and the subsequent evolution of polymorphism are discussed.  相似文献   

11.
In the mosquito Culex pipiens complex (Diptera: Culicidae), the amplification of carboxylesterase genes is an important mechanism providing resistance to organophosphate insecticides. Various amplified alleles at the Ester locus have been identified over the world. In this study, two newly detected Ester alleles, Ester(B10) and Ester(11) (including associated Ester(A11) and Ester(B11)), coding for esterases B10 and A11-B11, respectively, are characterized qualitatively and quantitatively. A high molecular identity is observed both at the nucleotide level and at the deduced amino acid level among the known Ester alleles. Real-time quantitative PCR results suggest 2.5-fold amplification of the Ester(B10) allele, 36.5-fold amplification of the Ester(A11) allele, and 19.1-fold amplification of the Ester(B11) allele. The ca. 2-fold difference in amplification level between Ester(A11) and Ester(B11) may indicate a new model for the esterase amplification. Bioassays show that these two resistant Ester alleles only can confer moderate or low resistance to the tested organophosphate insecticides.  相似文献   

12.
When strong directional selection acts on a trait, the spatial distribution of phenotypes may reflect effects of selection, as well as the spread of favoured genotypes by gene flow. Here we investigate the relative impact of these factors by assessing resistance to synthetic pyrethroids in a 12-year study of diamondback moth, Plutella xylostella, from southern Australia. We estimated resistance levels in populations from brassicaceous weeds, canola, forage crops and vegetables. Differences in resistance among local populations sampled repeatedly were stable over several years. Levels were lowest in samples from weeds and highest in vegetables. Resistance in canola samples increased over time as insecticide use increased. There was no evidence that selection in one area influenced resistance in adjacent areas. Microsatellite variation from 13 populations showed a low level of genetic variation among populations, with an AMOVA indicating that population only accounted for 0.25% of the molecular variation. This compared to an estimate of 13.8% of variation accounted for by the resistance trait. Results suggest that local selection rather than gene flow of resistance alleles dictated variation in resistance across populations. Therefore, regional resistance management strategies may not limit resistance evolution.  相似文献   

13.
The deleterious pleiotropic effects of an adaptive mutation may be ameliorated by one of two modes of evolution: (1) by replacement, in which an adaptive mutation with harmful pleiotropic effects is replaced by one that confers an equal benefit but at less cost; or (2) by compensatory evolution, in which natural selection favors modifiers at other loci that compensate for the deleterious effects of the mutant allele. In this study, we have measured the potential of these two modes of evolution to ameliorate the deleterious pleiotropic effects of resistance to the antibiotic rifampicin in the soil bacterium Bacillus subtilis. One approach was to measure the fitness cost of a series of spontaneous rifampicin-resistance mutations from each of several strains. The potential for amelioration by the replacement mode was estimated by the variation in fitness cost among the mutants of a single strain. Another approach was to introduce a series of different rifampicin-resistance alleles into a diversity of strains, and to measure the fitness cost of rifampicin resistance for each allele-by-strain combination. The potential for amelioration by the replacement mode was estimated by the variation in fitness costs among rifampicin-resistance alleles; the potential for compensatory evolution was estimated by variation in the fitness cost of rifampicin resistance among strains. This study has shown that the cost of rifampicin resistance may be ameliorated by both the compensatory and replacement modes.  相似文献   

14.
AIn the mosquito Culex pipiens (L.) (Diptera: Culicidae) esterases contribute to insecticide resistance by their increased activity. These esterases display a heterogeneous geographical distribution, particularly in Tunisia, where they are very diverse. In this study, we extended the characterization of a highly active esterase first detected in 1996: B12. Esterase B12 displayed the fastest electrophoretic mobility of all the previously described highly active esterases. We showed that it was encoded by the Ester(B12) allele at the Ester locus, and we isolated a strain, TunB12, homozygous for this allele. TunB12 displayed a low (approximately two- to three-fold) but significant resistance to the organophosphates temephos and chlorpyrifos, and to the pyrethroid permethrin. Only temephos resistance was synergized by S,S,S-tributyl-phosphorotrithioate. Real-time quantitative polymerase chain reaction revealed that the Ester(B12) allele was not amplified in TunB12 strain, indicating that B12 high activity could be due to a gene up-regulation mechanism. Ester(B12) allele frequencies also were estimated in 20 Tunisian populations collected in 2005. Analyses revealed a large distribution of this allele all over the country. Finally, sequences of Ester(B12) were acquired and genetic distance trees were constructed with the resistance Ester alleles already published, providing indications about allele's origins. The diverse array of highly active esterases in C. pipiens from Tunisia and the possible scenario of the origin of their coding alleles are discussed in the context of their possible evolution.  相似文献   

15.
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.  相似文献   

16.
Connallon T  Clark AG 《Genetics》2012,190(4):1477-1489
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.  相似文献   

17.
The distribution of neutral genetic variability within and among sets of populations results from the combined actions of genetic drift, migration, extinction and recolonization processes, mutation, and the mating system. We here analyzed these factors in 38 populations of the hermaphroditic snail Bulinus truncatus. The sampling area covered a large part of the species range. The variability was analyzed using four polymorphic microsatellite loci. A very large number of alleles (up to 55) was found at the level of the whole study. Observed heterozygote deficiencies within populations are consistent with very high selfing rates, generally above 0.80, in all populations. These should depress the variability within populations, because of low effective size, genetic hitchhiking, and background selection, whatever the model of mutation assumed. However, that some populations exhibit much more variability than others suggests that historical demographic processes (e.g., population size variation, bottlenecks, or founding events) may play a significant role. A hierarchical analysis of the distribution of the variability across populations indicates a strong pattern of isolation by distance, whatever the geographical scale considered. Our analysis also illustrates how the mutation rate may affect population differentiation, as different mutation rates result in different levels of homoplasy at microsatellite loci. The effects of both genetic drift and gene flow vary with the temporal and spatial scales considered in B. truncatus populations.  相似文献   

18.
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.  相似文献   

19.
20.
Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially-explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal panmictic populations in an allopatric setting in their predictions of population structure and frequency of fixation of adaptive alleles. We explore initial applications of a spatially-explicit, individual-based evolutionary landscape genetics program that incorporates all factors--mutation, gene flow, genetic drift and selection--that affect the frequency of an allele in a population. We incorporate natural selection by imposing differential survival rates defined by local relative fitness values on a landscape. Selection coefficients thus can vary not only for genotypes, but also in space as functions of local environmental variability. This simulator enables coupling of gene flow (governed by resistance surfaces), with natural selection (governed by selection surfaces). We validate the individual-based simulations under Wright-Fisher assumptions. We show that under isolation-by-distance processes, there are deviations in the rate of change and equilibrium values of allele frequency. The program provides a valuable tool (cdpop v1.0; http://cel.dbs.umt.edu/software/CDPOP/) for the study of evolutionary landscape genetics that allows explicit evaluation of the interactions between gene flow and selection in complex landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号