首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probing the structure of 16 S ribosomal RNA from Bacillus brevis   总被引:9,自引:0,他引:9  
A majority (approximately 89%) of the nucleotide sequence of Bacillus brevis 16 S rRNA has been determined by a combination of RNA sequencing methods. Several experimental approaches have been used to probe its structure, including (a) partial RNase digestion of 30 S ribosomal subunits, followed by two-dimensional native/denatured gel electrophoresis, in which base-paired fragments were directly identified; (b) identification of positions susceptible to cleavage by RNase A and RNase T1 in 30 S subunits; (c) sites of attack by cobra venom RNase on naked 16 S rRNA; and (d) nucleotides susceptible to attack by bisulfite in 16 S rRNA. These data are discussed with respect to a secondary structure model for B. brevis 16 S rRNA derived by comparative sequence analysis.  相似文献   

2.
3.
4.
We have examined the effect of binding ribosomal protein S4 to 16 S rRNA on the susceptibility of the RNA to a variety of chemical and enzymatic probes. We have used dimethyl sulfate to probe unpaired adenines (at N-1) and cytosines (at N-3), kethoxal to probe unpaired guanines (at N-1 and N-2) and cobra venom (V1) ribonuclease as a probe of base-paired regions of 16 S rRNA. Sites of attack by the probes were identified by primer extension using synthetic oligodeoxynucleotides. Comparison of probing results for naked and S4-bound rRNA shows: Protein S4 protects a relatively compact region of the 5' domain of 16 S rRNA from chemical and enzymatic attack. This region is bounded by nucleotides 27 to 47 and 394 to 556, and has a secondary structure characterized by the junction of five helical elements. Phylogenetically conserved irregular features (bulged nucleotides, internal loops and flanking unpaired nucleotides) and helical phosphodiester bonds of four of the helices are specifically protected in the S4-RNA complex. We conclude that this is the major, and possibly sole region of contact between 16 S rRNA and S4. Many of the S4-dependent changes mimic those observed on assembly of 16 S rRNA into 30 S ribosomal subunits. Binding of S4 causes enhanced chemical reactivity coupled with protection from V1 nuclease outside the S4 junction region in the 530, 720 and 1140 loops. We interpret these results as indicative of loss of structure, and suggest that S4 binding causes disruption of adventitious pairing in these regions, possibly by stabilizing the geometry of the RNA such that these interactions are prevented from forming.  相似文献   

5.
Recent technological developments permit us to examine the accessibility of specific atoms on any nucleotide in any large RNA molecule to certain chemical probes. This can provide detailed information about the higher order structure of large RNA molecules, including secondary and tertiary structure, protein-RNA contacts, binding sites for functional ligands and possible biologically significant conformational changes. Here, we summarize recent studies on (i) the conformation of naked 16S rRNA under a variety of ionic conditions, and (ii) the behaviour of 16S rRNA in active and inactive 30S subunits, as defined by Zamir, Elson and their colleagues. The latter study reveals a reciprocal conformational change in the vicinity of the decoding region of 16S rRNA in 30S ribosomal subunits. This conformational change appears to be a rearrangement of tertiary and/or quaternary structure involving several universally conserved nucleotides. No reproducible effects are seen elsewhere in the molecule, suggesting that the active-inactive transition is a result of the observed conformational change.  相似文献   

6.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

7.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

8.
A photoreactive analogue of spermine, N1-azidobenzamidino (ABA)-spermine, was covalently attached after irradiation to Escherichia coli 30S ribosomal subunits or naked 16S rRNA. By means of RNase H digestion and primer extension, the cross-linking sites of ABA-spermine in naked 16S rRNA were characterised and compared with those identified in 30S subunits. The 5′ domain, the internal and terminal loops of helix H24, as well as the upper part of helix H44 in naked 16S rRNA, were found to be preferable binding sites for polyamines. Association of 16S rRNA with ribosomal proteins facilitated its interaction with photoprobe, except for 530 stem–loop nt, whose modification by ABA-spermine was abolished. Association of 30S with 50S subunits, poly(U) and AcPhe-tRNA (complex C) further altered the susceptibility of ABA-spermine cross-linking to 16S rRNA. Complex C, modified in its 30S subunit by ABA-spermine, reacted with puromycin similarly to non-photolabelled complex. On the contrary, poly(U)-programmed 70S ribosomes reconstituted from photolabelled 30S subunits and untreated 50S subunits bound AcPhe-tRNA more efficiently than untreated ribosomes, but were less able to recognise and reject near cognate aminoacyl-tRNA. The above can be interpreted in terms of conformational changes in 16S rRNA, induced by the incorporation of ABA-spermine.  相似文献   

9.
Under appropriate conditions, functional Escherichia coli 30S ribosomal subunits assemble in vitro from purified components. However, at low temperatures, assembly stalls, producing an intermediate (RI) that sediments at 21S and is composed of 16S ribosomal RNA (rRNA) and a subset of ribosomal proteins (r-proteins). Incubation of RI at elevated temperatures produces a particle, RI*, of similar composition but different sedimentation coefficient (26S). Once formed, RI* rapidly associates with the remaining r-proteins to produce mature 30S subunits. To understand the nature of this transition from RI to RI*, changes in the reactivity of 16S rRNA between these two states were monitored by chemical modification and primer extension analysis. Evaluation of this data using structural and biochemical information reveals that many changes are r-protein-dependent and some are clustered in functional regions, suggesting that this transition is an important step in functional 30S subunit formation.  相似文献   

10.
We have derived a secondary structure model for 16S ribosomal RNA on the basis of comparative sequence analysis, chemical modification studies and nuclease susceptibility data. Nucleotide sequences of the E. coli and B. brevis 16S rRNA chains, and of RNAse T1 oligomer catalogs from 16S rRNAs of over 100 species of eubacteria were used for phylogenetic comparison. Chemical modification of G by glyoxal, A by m-chloroperbenzoic acid and C by bisulfite in naked 16S rRNA, and G by kethoxal in active and inactive 30S ribosomal subunits was taken as an indication of single stranded structure. Further support for the structure was obtained from susceptibility to RNases A and T1. These three approaches are in excellent agreement. The structure contains fifty helical elements organized into four major domains, in which 46 percent of the nucleotides of 16S rRNA are involved in base pairing. Phylogenetic comparison shows that highly conserved sequences are found principally in unpaired regions of the molecule. No knots are created by the structure.  相似文献   

11.
12.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

13.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

14.
Chi W  He B  Mao J  Li Q  Ma J  Ji D  Zou M  Zhang L 《Plant physiology》2012,158(2):693-707
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.  相似文献   

15.
A new approach for function and structure study of ribosomes based on oligodeoxyribonucleotide-directed cleavage of rRNA with RNase H and subsequent reconstitution of ribosomal subunits from fragmented RNA has been developed. The E coli 16S rRNA was cleaved at 9 regions belonging to different RNA domains. The deletion of 2 large regions was also produced by cleaving 16S rRNA in the presence of 2 or 3 oligonucleotides complementary to different RNA sites. Fragmented and deleted RNA were shown to be efficiently assembled with total ribosomal protein into 30S-like particles. The capacity to form 70S ribosomes and translate both synthetic and natural mRNA of 30S subunits reconstituted from intact and fragmented 16S mRNA was compared. All 30S subunits assembled with fragmented 16S rRNA revealed very different activity: the fragmentation of RNA at the 781-800 and 1392-1408 regions led to the complete inactivation of ribosomes, whereas the RNA fragmentation at the regions 296-305, 913-925, 990-998, 1043-1049, 1207-1215, 1499-1506, 1530-1539 did not significantly influence the ribosome protein synthesis activity, although it was also reduced. These findings are mainly in accordance with the data on the functional activity of some 16S rRNA sites obtained by other methods. The relations between different 16S RNA functional sites are discussed.  相似文献   

16.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

17.
18.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

19.
20.
Assembly of bacterial 30S ribosomal subunits requires structural rearrangements to both its 16S rRNA and ribosomal protein components. Ribosomal protein S4 nucleates 30S assembly and associates rapidly with the 5′ domain of the 16S rRNA. In vitro, transformation of initial S4–rRNA complexes to long-lived, mature complexes involves refolding of 16S helix 18, which forms part of the decoding center. Here we use targeted mutagenesis of Geobacillus stearothermophilus S4 to show that remodeling of S4–rRNA complexes is perturbed by ram alleles associated with reduced translational accuracy. Gel mobility shift assays, SHAPE chemical probing, and in vivo complementation show that the S4 N-terminal extension is required for RNA binding and viability. Alanine substitutions in Y47 and L51 that interact with 16S helix 18 decrease S4 affinity and destabilize the helix 18 pseudoknot. These changes to the protein–RNA interface correlate with no growth (L51A) or cold-sensitive growth, 30S assembly defects, and accumulation of 17S pre-rRNA (Y47A). A third mutation, R200A, over-stabilizes the helix 18 pseudoknot yet results in temperature-sensitive growth, indicating that complex stability is finely tuned by natural selection. Our results show that early S4–RNA interactions guide rRNA folding and impact late steps of 30S assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号