首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptors for aggregated immunoglobulin G (IgG) (an Fc receptor) and for ristocetin-von Willebrand factor on human platelets were studied by means of various modifications of the platelet surface. The expression of these receptors was measured by the agglutination of platelets to ristocetin in the presence of von Willebrand factor, which is part of the factor VIII complex, and by the binding of aggregated IgG coupled to 3H-labelled diazobenzen. Treatment of platelets with chymotrypsin, trypsin, papain and pronase which removed protein and glycoprotein from the platelet under conditions where the release reaction was inhibited caused loss of the expression of the receptor for ristocetin-von Willebrand factor and an enhancement of that for aggregated IgG. Induction of membrane changes with ADP and of the release reaction with the ionophore A23187 abolished agglutination to ristocetin-von Willebrand factor but did not alter the receptor for aggregated IgG. Possible contributions of unspecific membrane changes, produced by protease treatment of platelets, to the modification of receptor expression were eliminated by the use of formaldehyde-treated platelets. Trypsin, papain and pronase destroyed the ability of these platelets to agglutinate to ristocetin-von Willebrand factor but produced no change in the binding of aggregated IgG. Therefore, the receptor for ristocetin-von Willebrand factor is truly sensitive to proteolysis while the Fc receptor is not, but is partially masked by protease-sensitive material.  相似文献   

2.
To determine whether ligand-receptor interactions could engender the selective uptake by deficient cells of enzyme-laden liposomes, aggregated human IgG was used to coat liposomes which had previously trapped purified hexosaminidase A (Hex A). By a new, high-yield procedure, Hex A was purified 7000-fold from human placenta: the homogeneous protein had a pI of 5.4, permitting nonelectrostatic trapping in the aqueous interstices of anionic multilamellar liposomes (molar ratios of phosphatidyl-choline-dicetyl phosphate-cholesterol, 7:2:1). Trapped Hex A was separated from free enzyme by means of Sephadex G-200 chromatography: 1.3 +/- 0.3 mUnits of Hex A/mumol of phospholipid became associated with liposomes and trapped glucose, utilized as a marker of the aqueous compartment. Once sequestered, the enzyme remained latent until lamellae were disrupted by Triton X-100. Presence of enzyme in aqueous compartments was proved by the demonstration of increased trapping (0.02-1.33 mUnits/mumol of phospholipid) with increments in like-sign repulsion of the bilayers produced by increasing molar ratios of anionic dicetyl phosphate (5-20%). To provide for ligand-receptor interaction with surface Fc receptors of human polymorphonuclear leukocytes (PMN's), liposomes were coated by heat-aggregated (62 degrees C, 10 min) human IgG. PMN's from Tay-Sachs patients genetically deficient in Hex A activity readily incorporated exogenous Hex A provided in this fashion. PMN's exposed to enzyme-laden liposomes coated with aggregated IgG incorporated significantly more Hex A than when the enzyme was presented in uncoated liposomes or in liposomes coated with native IgG, which engages Fc receptors with less avidity. Free enzyme was not endocytized. Acquisition of specific Hex A isozyme activity by cells (determined by DEAE-cellulose chromatography) was not due to surface adsorption since cytochalasin B, which prevents phagocytosis but not surface adherence; blocked uptake. Incorporation of the isozyme by deficient cells was also demonstrated by starch gel electrophoresis, and ultrastructural studies showed that the immunoglobulin-coated, Hex A-containing liposomes were taken up into PMN lysosomes after membrane fusion. The studies indicate that liposomes coated with surface ligands may be used to introduce enzyme or other materials into deficient cells possessing appropriate surface receptors.  相似文献   

3.
The effects of two mercurial compounds, methylmercury and inorganic mercury, on lipids were examined by measuring permeability change of lipid bilayer, liposome. Both decrease in the cholesterol content and increase in the content of unsaturated fatty acid moieties in the lipid bilayers, augmented to susceptibility of the liposomes to the mercurial compounds. Inorganic mercury and methylmercury disrupted the lipid membrane to essentially the same extent. The influence on the permeability seems to be specific for mercury compounds. The significant increase in the permeability of some liposomal preparation noted even at the mercurial concentration of 10(-7) M strongly suggests that lipid in biomembrane could be one of the primary targets of these toxic substances.  相似文献   

4.
We prepared thermosensitive poly( N-(2-hydroxypropyl)methacrylamide mono/dilactate) (pHPMA mono/dilactate) polymer and studied temperature-triggered contents release from polymer-coated liposomes. HPMA mono/dilactate polymer was synthesized with a cholesterol anchor suitable for incorporation in the liposomal bilayers and with a cloud point (CP) temperature of the polymer slightly above normal body temperature (42 degrees C). Dynamic light scattering (DLS) measurements showed that whereas the size of noncoated liposomes remained stable upon raising the temperature from 25 to 46 degrees C, polymer-coated liposomes aggregated around 43 degrees C. Also, noncoated liposomes loaded with calcein showed hardly any leakage of the fluorescent marker when heated to 46 degrees C. However, polymer-coated liposomes showed a high degree of temperature-triggered calcein release above the CP of the polymer. Likely, liposome aggregation and bilayer destabilization are triggered because of the precipitation of the thermosensitive polymer above its CP onto the liposomal bilayers, followed by permeabilization of the liposomal membrane. This study demonstrates that liposomes surface-modified with HPMA mono/dilactate copolymer are attractive systems for achieving temperature-triggered contents release.  相似文献   

5.
We have previously reported that antigen coupled with liposomes induced antigen-specific and IgE-selective unresponsiveness in mice. This antigen preparation was investigated for application in a novel vaccine protocol to induce minimal IgE synthesis. In this study, ovalbumin (OVA)-liposome conjugates were made using liposomes of four different lipid components, including unsaturated carrier lipid and three different saturated carrier lipids, after which the induction of anti-OVA antibody production was investigated in mice. All of the OVA-liposome conjugates induced IgE-selective unresponsiveness. The membrane fluidity of liposomes, as measured by detecting changes in the fluorescence polarization of a 1,6-diphenyl-1,3,5-hexatriene (DPH) probe located in the bilayers, was significantly higher in liposomes consisting of unsaturated carrier lipids than those of the other liposomes consisting of saturated carrier lipids. The highest titer of anti-OVA IgG was observed in mice immunized with OVA-liposomes made using liposomes consisting of unsaturated carrier lipids. In addition, among these OVA-liposomes, the one possessing the longest carbon chain induced the lowest IgG antibody production. These results suggest that the membrane fluidity of liposomes might affect the adjuvant effect of liposomes but not the induction of IgE-selective unresponsiveness in immunizations with surface-linked liposomal antigens.  相似文献   

6.
A direct method using derivative spectrophotometry was developed for determining membrane-water molar partition coefficients (Kp) of the anticancer drugs tamoxifen (TAM) and 4-hydroxytamoxifen (OHTAM). This method explores a shift in the absorption spectra of the drugs when removed from the aqueous phase to a hydrophobic environment. Partition of TAM and OHTAM depends on membrane composition and on drug concentration, temperature and presence of cholesterol. Unlike OHTAM, partition of TAM in DMPC bilayers, liposomes of sarcoplasmic reticulum (SR) lipids and native membranes of SR and mitochondria decreases linearly with drug concentration. Additionally, the partition of these drugs is higher in SR native membranes than in liposomes of SR lipids. The partition also depends on membrane type, being higher in mitochondria than in SR membranes. Maximal partitionings in DMPC are observed at temperatures in the range of the main phase transition. Cholesterol strongly affects the incorporation of drugs and maximal inhibition was observed in DMPC bilayers.  相似文献   

7.
The Alzheimer's disease-related peptide beta-amyloid (Abeta) is toxic to neurons. The toxicity of the peptide appears to require conversion of the monomeric form to an aggregated fibrillar species. The interaction of Abeta with cell membranes has attracted interest as one plausible mechanism by which the peptide exerts its toxic activity. We developed two methods to measure the adsorption of fresh (monomeric) and aged (aggregated) Abeta to lipid bilayers. In one method, the kinetics of Abeta adsorption and desorption to liposomes deposited onto a dextran-coated surface was measured using surface plasmon resonance. In the other method, Abeta was contacted with liposome-coated magnetic beads; adsorbed Abeta was separated from solution-phase peptide by use of a magnetic field. Monomeric Abeta adsorbed quickly but reversibly to lipid bilayers with low affinity, while aggregated Abeta adsorbed slowly but irreversibly. These two methods provide complementary means of quantifying the adsorption of aggregating proteins to membranes. The results correlate strongly with previous observations that fibrillar, but not monomeric, Abeta restricts the motion of acyl tails in phospholipid bilayers. The methods should be useful for further elucidation of the role of membrane adsorption in mediating Abeta toxicity, and in the search for inhibitors of toxicity.  相似文献   

8.
The destabilization of vesicles caused by interactions between lipid bilayers and proteins was studied by direct, real-time observation using high-intensity dark-field microscopy. We previously reported that talin, a cytoskeletal submembranous protein, can reversibly open stable large holes in giant liposomes made of neutral and acidic phospholipids. Talin and other proteins belonging to the band 4.1 superfamily have the FERM domain at their N-terminal and interact with lipid membranes via that domain. Here, we observed that band 4.1, ezrin and moesin, members of the band 4.1 superfamily, are also able to open stable holes in liposomes. However, truncation of their C-terminal domains, which can interact with the N-terminal FERM domain, impaired their hole opening activities. Oligomeric states of ezrin affected the capability of the membrane hole formation. Phosphatidylinositol bisphosphate (PIP2), which binds to the FERM domain and disrupts the interaction between the N and C termini of the band 4.1 superfamily, down-regulates their membrane opening activity. These results suggest that the intermolecular interaction plays a key role in the observed membrane hole formation.  相似文献   

9.
An appraisal of Fc receptors on human peripheral blood B and L lymphocytes.   总被引:11,自引:0,他引:11  
Human circulating lymphocytes with easily detectable surface immunoglobulin have been divided into two populations, B cells and L cells. This second population lacks membrane-incorporated Ig, but has a receptor for membrane-labile cytophilic IgG. In this study purified B and L lymphocytes were examined for Fc receptors that bind aggregated IgG and IgG complexed to erythrocytes. Purified lymphocyte populations were prepared by nylon columns and by negative selection with rosetting techniques. L lymphocytes bound aggregated guinea pig and human IgG, and formed rosettes with human erythrocytes sensitized with Ripley IgG (EA). Treatment of L lymphocytes with trypsin had no effect on the receptors for IgG. B lymphocytes did not bind EA and attachment of aggregated IgG was variable; up to one-third of these cells fixed aggregated human IgG to the cell membrane. Trypsin treatment abolished binding of Agg-IgG to B cells in sharp contrast to its effect on L cells. Furthermore, double-label immunofluorescence studies showed that cells with both membrane-incorporated Ig and receptors for aggregated guinea pig IgG were rare. These studies indicate that human peripheral blood B lymphocytes lack a high affinity, trypsin-resistant Fc receptor that is present on L lymphocytes.  相似文献   

10.
Functionalized manoyl oxide derivatives have been proved over the years to evoke several biological responses. Among them, 3beta-hydroxy-manoyl oxide (1) and 3beta-acetoxy-manoyl oxide (2) have been shown to exhibit in vitro antimicrobial and cytotoxic activity, while N-imidazole-3 beta-thiocarbonyl ester of manoyl oxide (3) was found to exhibit potent cytotoxic effect. Their partitioning into phospholipid bilayers may lead to membrane structure modifications that are crucial in liposome development as they may influence their maintenance and integrity. DSC was used to study the modifications induced in DPPC bilayers by incorporating increasing concentrations of the three manoyl oxide derivatives. All derivatives were found to strongly affect the bilayer structural organization in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase and the induction of a lateral phase separation in clustering domains. Derivatives 1 and 3 were incorporated into DPPC liposomes and their physicochemical stability was monitored at 4 degrees C. The stability of liposomes was strongly influenced by the presence of 1 and 3 at any molar ratio studied. DPPC/1 liposomes were found to retain its stability for 48 h at low concentration of 10% mol, while at higher concentrations up to 30% mol they collapsed into aggregated material. In all cases DPPC/3 liposomes were found unstable and sticky aggregated structures precipitated from the bulk suspension.  相似文献   

11.
Because of the sustained interest in liposomes as immunogens and vehicles for drug delivery, the present investigation was designed to reevaluate the iodoacetyl group as a means of binding sulfhydryl-containing substances to liposomes in thioether linkage, and to develop an alternative method by which liposomes with bound ligand can be conveniently and rapidly separated from free ligand. For the purpose of the first goal, we synthesized a homologous series of dimyristoylphosphatidylethanolamine (DMPE) derivatives in which the iodoacetyl (IA) function was separated from the phospholipid amino group by either 0, 1, or 2 aminoethylthioacetyl (AETA) spacers. Results show that liposomes prepared with IA-DMPE can not bind 125I-radiolabeled rabbit IgG which had been thiolated by reaction with S-acetylmercaptosuccinic anhydride. Significant IgG attachment was, however, obtained with liposomes containing either IA-AETA-DMPE or IA-(AETA)2-DMPE, and the amount bound was directly related to spacer length. In contrast, spacer length had no effect on the covalent binding of a low molecular weight hapten, N-dinitrophenylcysteine. Other parameters (incubation time, IgG concentration, density of IA-(AETA)2-DMPE, sulfhydryl inhibitors) were also examined. To achieve the second objective, biotinyl-(AETA)2-DMPE was incorporated into the same liposomal bilayers that contained the iodoacetylated derivatives. Thus, liposomes with bound ligand could be readily precipitated by avidin, and washed free of unreacted IgG by low speed centrifugation. Comparative experiments with liposomes containing biotinyl-DMPE revealed that spacer length also had a pronounced effect on the avidin precipitability of liposomes in the presence of proteins that may be non-covalently absorbed or covalently bound to the model membrane surface.  相似文献   

12.
Glucose oxidase-containing liposomes (GOL) as well as detergent-modulated glucose oxidase-containing liposomes were prepared and characterized, focusing not only on the reactivity of the liposomes upon external addition of glucose but also on the leakage of the entrapped glucose oxidase (GO) from the liposomes with the aim of developing a reactive and stable liposomal GO system. The membranes of the GOL prepared were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modulated with either Triton X-100 or cholate. In the absence of added detergent, no GO leakage from the GOL was observed while its enzymatic activity was very low (low glucose permeability). As detergent-modulated liposomes, mixed POPC/Triton X-100 and mixed POPC/cholate liposomes (abbreviated as TL and CL, respectively) were prepared at different effective detergent/POPC molar ratios (R(e)) ranging from R(e) = 0 to R(e) = R(e) (sat) (R(e) (sat) is the critical value of R(e) at which the liposome membrane is saturated with detergent). The reactivity of GO-loaded TL (abbreviated as GOTL) or GO-loaded CL (GOCL) increased drastically with increase in the respective detergent content in the liposomes. In the case of GOTL, at R(e) (sat) = 0.40, a high reactivity was measured with a simultaneous high extent of GO leakage, suggesting that the observed enzymatic reaction was catalyzed mainly by leaked GO, caused by the interaction of Triton X-100 with the POPC membrane. On the other hand, GOCL prepared at R(e) (sat) = 0.43 showed relatively high reactivity with only a small extent of GO leakage, suggesting that most of the enzyme reaction was limited by the glucose permeation across the bilayers of GOCL. The GO leakage from GOCL was found to occur mostly during the rearrangement of the liposomal membrane during the preparation of the GOCL (mixing the GOL and cholate). Fluorescence polarization measurements of membrane-associated DPH (1,6-diphenyl-1,3,5-hexatriene) indicated that CL prepared by modifying POPC with cholate did not lead to a drastic change in membrane fluidity, indicating that the interacting cholate molecules did not penetrate deeply into the POPC bilayers. In summary, it was clearly shown that the membrane permeability of GOL can be quite simply modulated by mixing it with a certain amount of cholate to form highly reactive and stable GOCL with minimal enzyme leakage.  相似文献   

13.
Functionalized manoyl oxide derivatives have been proved over the years to evoke several biological responses. Among them, 3β-hydroxy-manoyl oxide (1) and 3β-acetoxy-manoyl oxide (2) have been shown to exhibit in vitro antimicrobial and cytotoxic activity, while N-imidazole-3 β-thiocarbonyl ester of manoyl oxide (3) was found to exhibit potent cytotoxic effect. Their partitioning into phospholipid bilayers may lead to membrane structure modifications that are crucial in liposome development as they may influence their maintenance and integrity. DSC was used to study the modifications induced in DPPC bilayers by incorporating increasing concentrations of the three manoyl oxide derivatives. All derivatives were found to strongly affect the bilayer structural organization in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase and the induction of a lateral phase separation in clustering domains. Derivatives 1 and 3 were incorporated into DPPC liposomes and their physicochemical stability was monitored at 4°C. The stability of liposomes was strongly influenced by the presence of 1 and 3 at any molar ratio studied. DPPC/1 liposomes were found to retain its stability for 48 h at low concentration of 10% mol, while at higher concentrations up to 30% mol they collapsed into aggregated material. In all cases DPPC/3 liposomes were found unstable and sticky aggregated structures precipitated from the bulk suspension.  相似文献   

14.
Affinity chromatography-purified and non-purified rabbit immunoglobulin G (IgG) raised against human immunoglobulin M (IgM) or kappa chain was incorporated into carboxyfluorescein-containing small unilamellar liposomes composed of egg phosphatidylcholine, cholesterol and phosphatidic acid (molar proportions 7:7:1). IgG incorporation was carried out by co-sonicating the immunoglobulin with the lipids (30% incorporated) (method A) or by interacting it with preformed liposomes bearing goat anti-(rabbit IgG) IgG (63 and 70% incorporated) (method B). (1) Judging from liposomal carboxyfluorescein-latency values, incorporation of IgG by either method did not affect liposomal stability. Furthermore, treatment of liposomes with papain released 75.1% (method A) and 93.3% and 95.1% (method B) of the IgG, suggesting that most of its antigen-recognizing Fab regions were available on the liposomal surface. This was strongly supported by the immunoelectrophoretic detection of Fab in papain-released products. (2) Liposomes bearing purified anti-IgM IgG bound 30%, (method A) and 45% (method B) of IgM in buffer. These values wee about 6-fold greater (both methods) than those obtained with corresponding liposomes bearing non-purified IgG. Binding of liposomes bearing anti-(kappa chain) IgG to kappa chain in buffer was 37% of that added. In the presence of mouse blood or serum, binding of IgM to liposomes bearing purified anti-IgM IgG was decreased slightly (24 and 30% for methods A and B). However, because of the nearly complete abolition of IgM binding to liposomes bearing non-purified IgG, these values were now 20–25-fold greater than those obtained with liposomes bearing non-purified IgG. (3) In mice pre-injected with IgM, at least 36.1% and 37.7% of the antigen was bound to subsequently injected liposomes bearing anti-IgM IgG incorporated by methods A and B respectively. No binding occurred with liposomes bearing the non-purified IgG. (4) Cholesterol-rich small unilamellar liposomes bearing affinity chromatography-purified antibodies may prove useful for the specific binding of free antigens in vivo.  相似文献   

15.
The receptors for aggregated immunoglobulin G (IgG) (an Fc receptor) and for ristocetin-von Willebrand factor on human platelets were studied by means of various modifications of the platelet surface. The expression of these receptors was measured by the agglutination of platelets to ristocetin in the presence of von Willebrand factor, which is part of the factor VIII complex, and by the binding of aggregated IgG coupled to 3H-labelled diazobenzene. Treatment of platelets with chymotrypsin, trypsin, papain and pronase which removed protein and glycoprotein from the platelet under conditions where the release reaction was inhibited caused loss of the expression of the receptor for ristocetin-von Willebrand factor and an enhancement of that for aggregated IgG. Induction of membrane changes with ADP and of the release reaction with the ionophore A23187 abolished agglutination to ristocentin-von Willebrand factor but did not alter the receptor for aggregated IgC. Possible contributions of unspecific membrane changes, produced by protease treatment of platelets, to the modification of receptor expression were eliminated by the use of formaldehyde-treated platelets. Trypsin, papain and pronase destroyed the ability of these platelets to agglutinate to ristocetin-von Willebrand factor but produced no change in the binding of aggregated IgC. Therefore, the receptor for ristocetin-von Willebrand factor is truly sensitive to proteolysis while the Fc receptor is not, but is partially masked by protease-sensitive material.  相似文献   

16.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

17.
Lipid bilayer vesicles (liposomes) with and without glycoprotein incorporated into the membranes were tested for stability during freezing and thawing, in presence and absence of the cryoprotective agents (CPA) glycerol and dimethyl sulfoxide. Changes in turbidity and loss of energy transfer between fluorescent probes present in the bilayers were used to estimate membrane integrity.Freezing caused a 30 to 40% destruction of protein-free liposomes, in absence of CPA. CPA at 10 to 20% concentration prevented such losses, but at higher concentrations destabilized liposomes even without freezing. Protein-containing liposomes suffered no loss on freezing in absence or presence of CPA at moderate concentrations.Lowering of the storage temperature of frozen samples within the range of ?5 to ?27 °C increased the freeze damage. Slower rates of cooling and warming caused a slightly greater loss.The results are interpreted in terms of the liquid mosaic model for lipid bilayers. CPA at higher concentrations destabilize bilayers by dissolving phospholipids. At moderate concentrations, however, they prevent the damaging effect of dehydration of the lipid on freezing. Proteins appear to stabilize bilayers by providing increased hydration at the membrane surface, and by additional hydrophobic binding in the membrane interior.  相似文献   

18.
The degradation of cat immunoglobulin G (IgG) in blood-fed adult C. felis midguts was examined. SDS-PAGE analysis of dissected midgut extracts obtained from C. felis that had been blood fed for various times between 0 to 44 h revealed that by 24 h most of the high molecular weight proteins, including the heavy chain of IgG, were digested. A 31-kDa serine protease with IgG degrading activity was purified from fed C. felis midguts by benzamidine affinity chromatography, hydrophobic interaction chromatography, and cation exchange chromatography. Three primary cleavage products between 30- and 40-kDa were observed when the purified protease was incubated with protein A purified cat IgG. N-terminal amino acid sequence analysis of the products revealed that the IgG degrading protease cleaves after specific cysteine and lysine residues within the hinge region of IgG. The enzyme is also capable of degrading other immunoglobulins, serum albumin, and hemoglobin, suggesting that it may have roles in both combating the host's immune system and providing nutrients for the flea. A cDNA clone encoding the 265 amino acid IgG degrading protease proenzyme was isolated. When expressed in a baculovirus/insect cell expression system, the recombinant protein had the same N-terminus as the processed 237 amino acid mature native protein and possessed IgG degrading activity indistinguishable from the native protein. Arch. Insect Biochem.  相似文献   

19.
Biological functions of lysozyme, including its antimicrobial, antitumor, and immune-modulatory activities have been suggested to be largely determined by the lipid binding properties of this protein. To gain further insight into these interactions on a molecular level the association of lysozyme to liposomes composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or its mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-phosphatidylserine, or bovine heart cardiolipin was studied by a combination of fluorescence techniques. The characteristics of the adsorption of lysozyme to lipid bilayers were investigated using fluorescein 5'-isothiocyanate labeled protein, responding to membrane association by a decrease in fluorescence. Upon increasing the content of anionic phospholipids in lipid vesicles, the binding isotherms changed from Langmuir-like to sigmoidal. Using adsorption models based on scaled particle and double-layer theories, this finding was rationalized in terms of self-association of the membrane-bound protein. The extent of quenching of lysozyme tryptophan fluorescence by acrylamide decreased upon membrane binding, revealing a conformational transition for the protein upon its surface association, resulting in a diminished access of the fluorophore to the aqueous phase. Steady-state fluorescence anisotropy of bilayer-incorporated probe 1,6-diphenyl-1,3,5-hexatriene was measured at varying lipid-to-protein molar ratios. Lysozyme was found to increase acyl-chain order for liposomes with the content of acidic phospholipid exceeding 10 mol %. Both electrostatic and hydrophobic protein-lipid interactions can be concluded to modulate the aggregation behavior of lysozyme when bound to lipid bilayers. Modulation of lysozyme aggregation propensity by membrane binding may have important implications for protein fibrillogenesis in vivo. Disruption of membrane integrity by the aggregated protein species is likely to be the mechanism responsible for the cytotoxicity of lysozyme.  相似文献   

20.
Lipid asymmetry is a ubiquitous property of the lipid bilayers in cellular membranes and its maintenance and loss play important roles in cell physiology, such as blood coagulation and apoptosis. The resulting exposure of phosphatidylserine on the outer surface of the plasma membrane has been suggested to be caused by a specific membrane enzyme, scramblase, which catalyzes phospholipid flip-flop. Despite extensive research the role of scramblase(s) in apoptosis has remained elusive. Here, we show that phospholipid flip-flop is efficiently enhanced in liposomes by oxidatively modified phosphatidylcholines. A combination of fluorescence spectroscopy and molecular dynamics simulations reveal that the mechanistic basis for this property of oxidized phosphatidylcholines is due to major changes imposed by the oxidized phospholipids on the biophysical properties of lipid bilayers, resulting in a fast cross bilayer diffusion of membrane phospholipids and loss of lipid asymmetry, requiring no scramblase protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号