首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The DDK inbred strain of mouse has a striking particularity: when DDK females are crossed to males of other strains they exhibit a reduced fertility, whereas the reciprocal crosses (non-DDK females x DDK males) are fertile (Wakasugi et al. 1967; Wakasugi 1973). The low fertility results from an early embryonic lethality, the F1 embryos dying near the late morula-early blastocyst stage. Genetic analyses (Wakasugi 1974) and nuclear and cytoplasmic transfers (Renard and Babinet 1986; Babinet et al. 1990; Mann 1986), have shown that the failure of the embryos to develop is due to an incompatibility between a DDK maternally encoded cytoplasmic product and the non-DDK paternal genome. In order to elucidate the genetic determinism of this embryonic lethality, we have analyzed the fertility of male progeny from a backcross BALB/c females x (BALB/c x DDK)F1 males and that of males from a set of recombinant inbred (RI) strains, established from DDK and BALB/c progenitors, when mated with DDK females. Our results indicate that a single locus, Om, is responsible for the DDK syndrome and is located on Chromosome (Chr) 11, very close to the Sigje locus.  相似文献   

2.
The deafness mouse has profound sensorineural hearing loss with degeneration of hair cells soon after birth. The mode of inheritance is recessive, and there are no associated phenotypic anomalies. Thus, this mouse provides a model for recessive, nonsyndromic, prelingual deafness. We have mapped the gene causing deafness in the mouse to Chromosome (Chr) 19 by analysis of 230 intersubspecific backcross progeny. No recombinants were found with the microsatellite marker D19Mit14. The loci for two guanine nucleotide-binding proteins are tightly linked to this marker, and they are being investigated as possible candidate genes. The identification of the defective gene in the mouse will help to explain the mechanism that causes hair cell degeneration and is likely to identify a homologous gene for deafness in humans.  相似文献   

3.
4.
5.
Cat4 is the second largest allelism group in the collection of mouse dominant eye mutations recovered in Neuherberg and carriers express anterior polar cataract, central corneal opacity, and lens-corneal adhesions. We have mapped the Cat4 locus of the mouse to central Chromosome (Chr) 8 at position cM 31. Histological characterization of Cat4 a heterozygotes and homozygotes indicates failure of separation of the lens vesicle from the surface ectoderm. Human anterior segment ocular dysgenesis (ASOD) is autosomal dominant, carriers express an eye phenotype similar to that of Cat4 a carriers, and it has been mapped to a region of 4q homologous to mouse central Chr 8. Thus, on the basis of phenotype and map position, Cat4 may be a mouse model of human ASOD. The genes Junb, Jund1, Mel, and Zfp42 are discussed as possible candidates for Cat4. Received: 31 October 1996 / Accepted: 20 January 1997  相似文献   

6.
7.
8.
9.
Nonsyndromic or isolated cleft lip with or without cleft palate (CL/P) occurs in wide geographic distribution with an average birth prevalence of 1/700. We used direct sequencing as an approach to study candidate genes for CL/P. We report here the results of sequencing on 20 candidate genes for clefts in 184 cases with CL/P selected with an emphasis on severity and positive family history. Genes were selected based on expression patterns, animal models, and/or role in known human clefting syndromes. For seven genes with identified coding mutations that are potentially etiologic, we performed linkage disequilibrium studies as well in 501 family triads (affected child/mother/father). The recently reported MSX1 P147Q mutation was also studied in an additional 1,098 cleft cases. Selected missense mutations were screened in 1,064 controls from unrelated individuals on the Centre d'Étude du Polymorphisme Humain (CEPH) diversity cell line panel. Our aggregate data suggest that point mutations in these candidate genes are likely to contribute to 6% of isolated clefts, particularly those with more severe phenotypes (bilateral cleft of the lip with cleft palate). Additional cases, possibly due to microdeletions or isodisomy, were also detected and may contribute to clefts as well. Sequence analysis alone suggests that point mutations in FOXE1, GLI2, JAG2, LHX8, MSX1, MSX2, SATB2, SKI, SPRY2, and TBX10 may be rare causes of isolated cleft lip with or without cleft palate, and the linkage disequilibrium data support a larger, as yet unspecified, role for variants in or near MSX2, JAG2, and SKI. This study also illustrates the need to test large numbers of controls to distinguish rare polymorphic variants and prioritize functional studies for rare point mutations.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The cerebellar mouse mutation stumbler (stu) was mapped to proximal Chromosome (Chr) 2 with a recently developed polymerase chain reaction assay for endogenous retroviruses that vary between mouse strains. The stu locus resides between the markers D2Mit5 and D2Mit7. A number of developmentally or neurologically relevant candidate genes map in this region, including Bmi1, Dbh, Grin1, Notch1, Pax8, Rxra, and Spna2. Knowing the chromosomal localization of stu should simplify maintenance of the stumbler mouse stock and also enable analysis of the cerebellar defect in presymptomatic individuals.  相似文献   

18.
19.
Complex segregation analysis of nonsyndromic cleft lip and palate.   总被引:1,自引:15,他引:1       下载免费PDF全文
This study was undertaken to examine the inheritance pattern of nonsyndromic cleft lip with or without cleft palate (CL/P). Complex segregation analysis using the unified model as in POINTER and the regressive model as in REGD programs were applied to analyze a midwestern U.S. Caucasian population of 79 families ascertained through a proband with CL/F. In REGD, the dominant or codominant Mendelian major locus models of inheritance were the most parsimonious fit. In POINTER, besides the Mendelian major locus model, the multifactorial threshold (MF/T) model and the mixed model were also consistent with the observed data. However, the high heritability parameter of .93 (SD .063) in the MF/T model suggests that any random exogenous factors are unlikely to be the underlying mechanisms, and the mixed model indicates that this high heritability is accounted for by a major dominant locus component. These findings indicate that the best explanation for the etiology of CL/P in this study population is a putative major locus associated with markedly decreased penetrance. Molecular studies may provide further insight into the genetic mechanism underlying CL/P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号