首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We recently identified a novel ABC A subclass transporter, ABCA6, in human macrophages. Here, we report the molecular cloning of an additional ABC A subfamily transporter from macrophages denoted ABCA9. The identified coding sequence is 4.9 kb in size and codes for a 1624 amino acid protein product. In accordance with the proposed nomenclature, the novel transporter was designated ABCA9. The putative full-length ABC transporter polypeptide consists of two transmembrane domains and two nucleotide binding folds and thus conforms to the group of full-size ABC transporters. We identified alternative ABCA9 mRNA variants in human macrophages that predict the existence of three truncated forms of the novel transporter. Among the human ABC A subfamily transporters, ABCA9 exhibits the highest amino acid sequence homology with ABCA8 (72%) and ABCA6 (60%), respectively. The striking amino acid sequence similarity between these transporter molecules supports the notion that they represent an evolutionary more recently emerged subgroup within the family of ABC A transporters, which we refer to as "ABCA6-like transporters." ABCA9 mRNA is ubiquitously expressed with the highest mRNA levels in heart, brain, and fetal tissues. Analysis of the genomic structure revealed that the ABCA9 gene consists of 39 exons that are located within a genomic region of approximately 85 kb size on chromosome 17q24.2. In human macrophages, ABCA9 mRNA is induced during monocyte differentiation into macrophages and suppressed by cholesterol import indicating that ABCA9, like other known ABC A subfamily transporters, is a cholesterol-responsive gene. Based on this information, ABCA9 is likely involved in monocyte differentiation and macrophage lipid homeostasis.  相似文献   

3.
We report the identification of the full-length cDNA for a novel ATP-binding cassette (ABC) transporter from human macrophages. The mRNA is of 6.8 kb size and contains an open reading frame encoding a polypeptide of 2146 amino acids with a calculated molecular weight of 220 kDa. The predicted protein product is composed of two transmembrane domains and two nucleotide binding folds indicating that it pertains to the group of full-size ABC transporters. The novel transporter shows highest protein sequence homology with the recently cloned human cholesterol and phospholipid exporter ABCA1 (54%) and the human retinal transporter ABCR (49%), both members of the ABC transporter subfamily A. In accordance with the currently proposed classification, the novel transporter was designated ABCA7. ABCA7 mRNA was detected predominantly in myelo-lymphatic tissues with highest expression in peripheral leukocytes, thymus, spleen, and bone marrow. Expression of ABCA7 is induced during in vitro differentiation of human monocytes into macrophages. In macrophages, both the ABCA7 mRNA and protein expression are upregulated in the presence of modified low density lipoprotein and downregulated by HDL(3). Our results suggest a role for ABCA7 in macrophage transmembrane lipid transport.  相似文献   

4.
Multidrug resistance of cancer cells and pathogens is a serious clinical problem. A major factor contributing to drug resistance in cancer is the over-expression of P-glycoprotein, a plasma membrane ATP-binding cassette (ABC) drug efflux pump. Three-dimensional structural data with a resolution limit of approximately 8 A have been obtained from two-dimensional crystals of P-glycoprotein trapped in the nucleotide-bound state. Each of the two transmembrane domains of P-glycoprotein consists of six long alpha-helical segments. Five of the alpha-helices from each transmembrane domain are related by a pseudo-2-fold symmetry, whereas the sixth breaks the symmetry. The two alpha-helices positioned closest to the (pseudo-) symmetry axis at the center of the molecule appear to be kinked. A large loop of density at the extracellular surface of the transporter is likely to correspond to the glycosylated first extracellular loop, whereas two globular densities at the cytoplasmic side correspond to the hydrophilic, nucleotide-binding domains. This is the first three-dimensional structure for an intact eukaryotic ABC transporter. Comparison with the structures of two prokaryotic ABC transporters suggests significant differences in the packing of the transmembrane alpha-helices within this protein family.  相似文献   

5.
6.
The white, brown and scarlet genes of Drosophila melanogaster encode proteins which transport guanine or tryptophan (precursors of the red and brown eye colour pigments) and belong to the ABC transporter superfamily. Current models envisage that the white and brown gene products interact to form a guanine specific transporter, while white and scarlet gene products interact to form a tryptophan transporter. In this study, we report the nucleotide sequence of the coding regions of five white alleles isolated from flies with partially pigmented eyes. In all cases, single amino acid changes were identified, highlighting residues with roles in structure and/or function of the transporters. Mutations in w(cf) (G589E) and w(sat) (F590G) occur at the extracellular end of predicted transmembrane helix 5 and correlate with a major decrease in red pigments in the eyes, while brown pigments are near wild-type levels. Therefore, those residues have a more significant role in the guanine transporter than the tryptophan transporter. Mutations identified in w(crr) (H298N) and w(101) (G243S) affect amino acids which are highly conserved among the ABC transporter superfamily within the nucleotide binding domain. Both cause substantial and similar decreases of red and brown pigments indicating that both tryptophan and guanine transport are impaired. The mutation identified in w(Et87) alters an amino acid within an intracellular loop between transmembrane helices 2 and 3 of the predicted structure. Red and brown pigments are reduced to very low levels by this mutation indicating this loop region is important for the function of both guanine and tryptophan transporters.  相似文献   

7.
8.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H(158)WHD(161). To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

9.
The plasma membrane ATP-binding cassette (ABC) transporter Yor1p mediates oligomycin resistance in Saccharomyces cerevisiae. Its protein sequence places it in the multidrug resistance protein/cystic fibrosis transmembrane conductance regulator subfamily of ABC transporters. A key regulatory step in the biogenesis of this family of ABC transporter proteins is at the level of transport from the endoplasmic reticulum (ER) on through the secretory pathway. To explore the protein sequence requirements for Yor1p to move from the ER to its site of function at the plasma membrane, a series of truncation and alanine replacement mutations were constructed in Yor1p. This analysis detected two sequence motifs similar to the DXE element that has recently been found in other proteins that exit the ER. Loss of the N-terminal DXE element eliminated function of the protein, whereas loss of the C-terminal element only slightly reduced function of the resulting mutant Yor1p. Strikingly, although both of the single mutant proteins were stable, production of the double mutant caused dramatic destabilization of Yor1p. These data suggest that this large polytopic membrane protein requires multiple signals for normal forward trafficking, and elimination of this information may cause the mutant protein to be transferred to a degradative fate.  相似文献   

10.
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins, which catalyze the translocation of molecules across biological membranes in an ATP-dependent manner. Despite the diversity in the transported substrates, they all share the same architecture, comprised of two transmembrane (TMD) and two nucleotide-binding domains (NBD). Members of the bacteriocin ABC transporter subfamily feature a special domain, belonging to the C39 (cystein protease family 39) peptidase protein family. These domains are assumed to cleave a C-terminal signal sequence from the protein or peptide substrate before or during the transport process. Although the C39 peptidase-like domain of the ABC transporter haemolysin B from E. coli shows no proteolytic activity, it is essential for the function of this transporter. In order to elucidate the contribution of the isolated C39 peptidase-like domain in the whole transport process, the backbone and side chain 1H, 15N and 13C-NMR chemical shifts have been assigned.  相似文献   

11.
Mutations in the ATP-binding cassette transporter A1 (ABCA1) transporter are associated with Tangier disease and a defect in cellular cholesterol efflux. The amino terminus of the ABCA1 transporter has two putative in-frame translation initiation sites, 60 amino acids apart. A cluster of hydrophobic amino acids form a potentially cleavable signal sequence in this 60-residue extension. We investigated the functional role of this extension and found that it was required for stable protein expression of transporter constructs containing any downstream transmembrane domains. The extension directed transporter translocation across the ER membrane with an orientation that resulted in glycosylation of amino acids immediately distal to the signal sequence. Neither the native signal sequence nor a green fluorescent protein tag, fused at the amino terminus, was cleaved from ABCA1. The green fluorescent protein fusion protein had efflux activity comparable with wild type ABCA1 and demonstrated a predominantly plasma membrane distribution in transfected cells. These data establish a requirement for the upstream 60 amino acids of ABCA1. This region contains an uncleaved signal anchor sequence that positions the amino terminus in a type II orientation leading to the extracellular presentation of an approximately 600-amino acid loop in which loss-of-function mutations cluster in Tangier disease patients.  相似文献   

12.
13.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H158WHD161. To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

14.
The human P-glycoprotein (MDR1/P-gp) is an ATP-binding cassette (ABC) transporter involved in cellular response to chemical stress and failures of anticancer chemotherapy. In the absence of a high-resolution structure for P-gp, we were interested in the closest P-gp homolog for which a crystal structure is available: the bacterial ABC transporter MsbA. Here we present the molecular dynamics simulations performed on the transmembrane domain of the open-state MsbA in a bilayer composed of palmitoyl oleoyl phosphatidylethanolamine lipids. The system studied contained more than 90,000 atoms and was simulated for 50 ns. This simulation shows that the open-state structure of MsbA can be stable in a membrane environment and provides invaluable insights into the structural relationships between the protein and its surrounding lipids. This study reveals the formation of a semipore-like structure stabilized by two key phospholipids which interact with the hinge region of the protein during the entire simulation. Multiple sequence alignments of ABC transporters reveal that one of the residues involved in the interaction with these two phospholipids are under a strong selection pressure specifically applied on the bacterial homologs of MsbA. Hence, comparison of molecular dynamics simulation and phylogenetic data appears as a powerful approach to investigate the functional relevance of molecular events occurring during simulations.  相似文献   

15.
ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.  相似文献   

16.
Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.  相似文献   

17.
An alignment of the mammalian ABCA transporters enabled the identification of sequence segments, specific to the ABCA subfamily, which were used as queries to search for eukaryotic and prokaryotic homologues. Thirty-seven eukaryotic half and full-length transporters were found, and a close relationship with prokaryotic subfamily 7 transporters was detected. Each half of the ABCA full-transporters is predicted to comprise a membrane-spanning domain (MSD) composed of six helices and a large extracellular loop, followed by a nucleotide-binding domain (NBD) and a conserved cytoplasmic 80-residue sequence, which might have a regulatory function. The topology predicted for the ABCA transporters was compared to the crystal structures of the MsbA and BtuCD bacterial transporters. The alignment of the MSD and NBD domains provided an estimate of the degree of residue conservation in the cytoplasmic, extracellular and transmembrane domains of the ABCA transporter subfamily. The phylogenic tree of eukaryotic ABCA transporters based upon the NBD sequences, consists of three major clades, corresponding to the half-transporter single NBDs and to the full-transporter NBDls and NBD2s. A phylogenic tree of prokaryotic transporters and the eukaryotic ABCA transporters confirmed the evolutionary relationship between prokaryotic subfamily 7 transporters and eukaryotic ABCA half and full-transporters.  相似文献   

18.
The ATP binding cassette (ABC) transporter protein Yor1p was identified on the basis of its ability to elevate oligomycin resistance when it was overproduced from a high-copy-number plasmid. Analysis of the predicted amino acid sequence of Yor1p indicated that this protein was a new member of a subfamily of ABC transporter proteins defined by the multidrug resistance protein (MRP). In this work, Yor1p is demonstrated to localize to the Saccharomyces cerevisiae plasma membrane by both indirect immunofluorescence and biochemical fractionation studies. Several mutations were generated in the amino-terminal nucleotide binding domain (NBD1) of Yor1p to test if the high degree of sequence conservation in this region of the protein was important for function. Deletion of a phenylalanine residue at Yor1p position 670 led to a mutant protein that appeared to be retained in the endoplasmic reticulum (ER) and that was unstable. As shown by others, deletion of the analogous residue from a second mammalian MRP family member, the cystic fibrosis transmembrane conductance regulator (CFTR), also led to retention of this normally plasma membrane-localized protein in the ER. Changes in the spacing between or the sequences flanking functional motifs of Yor1p NBD1 led to defective trafficking or decreased activity of the mutant proteins. Analyses of the degradation of wild-type and DeltaF670 Yor1p indicated that the half-life of DeltaF670 Yor1p was dramatically shortened. While the vacuole was the primary site for turnover of wild-type Yor1p, degradation of DeltaF670 Yor1p was found to be more complex with both proteasomal and vacuolar contributions.  相似文献   

19.
20.
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号