共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to determine the antimutagenicity of WR-1065 added after irradiation of cells of cell lines differing in their ability to rejoin radiation-induced DNA double-strand breaks (DSBs). The postirradiation antimutagenicity of WR-1065 at the thymidine kinase locus was demonstrated for L5178Y (LY)-S1 cells that are deficient in repair of DNA DSBs. Less postirradiation antimutagenicity of WR-1065 was observed in LY-R16 and LY-SR1 cells, which are relatively efficient in DSB repair. Postirradiation treatment with WR-1065 had only a small stimulatory effect on DSB rejoining. A 3-h incubation of irradiated LY cells with WR-1065 caused slight changes in the distribution of cells in the phases of the cell cycle that differed between LY-S1 and LY-SR1 cells. Both LY-S1 and LY-SR1 cells were protected against the cytotoxic and mutagenic effects of radiation when WR-1065 was present 30 min before and during the irradiation. We conclude that the differential postirradiation effects of WR-1065 in the LY-S1 and LY-SR1 cells are not caused by differences in cellular uptake of the radioprotector or in its radical scavenging activity. Possible mechanisms for the postirradiation antimutagenicity of WR-1065 are discussed. 相似文献
2.
Interphase death of cultured mammalian cells (L5178Y) 总被引:1,自引:0,他引:1
3.
4.
Radioresistant mutants of L5178Y cells 总被引:1,自引:0,他引:1
V D Courtenay 《Radiation research》1969,38(1):186-203
5.
Effects of growth media on cell cycle progression in CHO cells exposed to the radioprotector WR-1065
Abstract. WR-1065 (2-[(aminopropyl)amino]ethanethiol) reduces cytotoxic and mutagenic effects caused by exposure of cells to radiation and chemotherapeutic drugs, but the mechanisms involved are not fully known. We have observed an accumulation of cells in G, in WR-1065 treated Chinese hamster ovary cells grown in a-minimal essential medium, while others have found no cell cycle effects in WR-1065 treated Chinese hamster ovary cells grown in McCoy's 5A medium. To determine if the two types of media had an effect on cells treated with WR-1065, we examined survival and cell cycle progression. Population doubling times of 12 h were observed for cells grown in both media. Incubation of AA8 cells grown in McCoy's 5A medium with 4 mM WR-1065 30 min prior to and during irradiation with 13' Cs gamma-rays resulted in a protection factor of 2.2, in close agreement with the value of 2.0 we previously obtained for AA8 cells grown in α-minimal essential medium. Treatment with WR-1065 caused an alteration in the cell cycles of cells grown in both media. An increase in the G2 population and a decrease in the G1 population was observed in cells incubated up to 3 h in the presence of 4 mM WR-1065, with a redistribution of the cells throughout the cell cycle occurring following removal of the drug. These data suggest that exposure of cells to WR-1065 is the cause of perturbations in cell cycle progression, and is not affected by the type of medium the cells are grown in. 相似文献
6.
Two temperature-sensitive mutants (ts1 and ts3) have been isolated from murine leukemic cells, L5178Y, after mutagenesis and cytosine arabinoside selection. Both ts1 and ts3 grew normally at the permissive temperature (33 °C) but not at the non-permissive temperature (39 °C). Consistent results were obtained with the growth patterns in suspension culture as well as the plating efficiencies in soft agar. Temperature shift experiments showed that the mutant cells remained viable after extended exposure to the non-permissive temperature. Labeling studies with radioactive precursors indicated that the synthesis of DNA, but not of RNA or protein, was affected in these mutants at 39 °C. The defective function of ts3 cells was substantially corrected by supplementing alanine, hypoxanthine, and pyruvate. 相似文献
7.
The amino acid contents of tumor cells that are either sensitive or resistant to treatment with L-asparaginase were measured. These amino acid concentrations were measured as a function of incubation time with L-asparaginase or as a function of the L-asparaginase dose. The cell types compared were the mouse leukemia lines L5178Y (sensitive to L-asparaginase treatment) and L5178Y/L-ASE (resistant to L-asparaginase treatment). Upon L-asparaginase treatment both cell lines lost most of their cellular asparagine but, whereas the resistant cells exhibited the ability to rebound to about 50% of initial values, the sensitive cells did not. While previous work had suggested that asparagine-dependent glycine synthesis was essential for sensitive cells (but not in resistant cells), we found no difference in the glycine content of either of the two cell lines as a function of either time or dose that would support this hypothesis. Major differences between the two cell lines were seen in the content of the essential amino acids before treatment with L-asparaginase. After incubation without L-asparaginase the contents of the two cell lines became similar. These results are discussed in terms of possible mechanisms of L-asparaginase sensitivity and resistance. 相似文献
8.
Space exploration has the potential to yield exciting and significant discoveries, but it also brings with it many risks for flight crews. Among the less well studied of these are health effects from space radiation, which includes the highly charged, energetic particles of elements with high atomic numbers that constitute the galactic cosmic rays. In this study, we demonstrated that 1 Gy iron ions acutely administered to mice in vivo resulted in highly complex chromosome damage. We found that all types of aberrations, including dicentrics as well as translocations, insertions and acentric fragments, disappear rapidly with time after exposure, probably as a result of the death of heavily damaged cells, i.e. cells with multiple and/or complex aberrations. In addition, numerous cells have apparently simple exchanges as their only aberrations, and these cells appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week, with little further decline apparent over an additional 8 weeks. These results indicate that exposure to 1 Gy iron ions produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods. The health effects of exposure to high-LET radiation in humans on prolonged space flights should remain a matter of concern. 相似文献
9.
Genotoxicity of gamma-irradiation in L5178Y mouse lymphoma cells 总被引:1,自引:0,他引:1
The ability of gamma-irradiation to induce gene mutation at the thymidine kinase locus and gross chromosome aberrations in L5178Y TK+/- 3.7.2C mouse lymphoma cells was evaluated. Positive results were obtained for both end-points. The majority of mutants were found to be small-colony mutants which correlated with the induction of gross chromosome aberrations. 相似文献
10.
Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions 总被引:2,自引:0,他引:2
We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers. 相似文献
11.
L5178Y cells were cultured in vitro at various temperatures. When the cells were in the exponential growth phase, the cells were in the "steady state of growth," i.e., the fraction of cells in the G1, S, G2, and M stages and the durations of each stage were constant. The life cycle analysis of the cells in the steady state of growth demonstrated that the G1 stage and the S stage were affected the most by variation of temperature, and suggested that these two stages have considerable influence on the growth rate of the L5178Y cells. The calculated activation energies were positive in each stage of the life cycle, whereas the entropies of activation were negative throughout. The possible significance of these findings in our search for the regulatory mechanisms of cell growth is discussed. 相似文献
12.
Rat-liver S9 preparations became highly mutagenic to cultured L5178Y mouse lymphoma cells when the exposure period was increased to 18-24 h or when S9 mix was preincubated in Fischer's medium at 37 degrees C for 19 h and then used to treat the cells for 4 h. Five different S9 preparations (from untreated and Aroclor 1254-treated Fischer 344 or Sprague-Dawley male rats) behaved similarly. S9 mix, which contained 1 mM NADP and 5 mM isocitrate as cofactors, was more mutagenic than S9 alone. Heat treatment of S9 did not destroy its mutagenic activity, but the addition of cofactors no longer stimulated an increase in mutagenicity, as observed with native S9. Treatment with cofactors was not mutagenic. These results implied the involvement of both energy-independent and NADPH-dependent enzymatic changes in S9 mix in producing mutagenic substances. The mutagenic treatments with S9 or S9 mix induced predominantly small TFT-resistant mutant colonies, which suggested that these treatments should be clastogenic to cultured mammalian cells. A warning was given that test chemicals evaluated as mutagenic only in the presence of S9 mix may instead be accelerating the decomposition of S9 mix into mutagens, and it may become necessary to experimentally distinguish between these two mechanisms before a chemical can be regarded as mutagenic. 相似文献
13.
Mouse lymphoma cells (L5178Y) exposed to hypertonic media for 1 h behave as osmometers, but in hypotonic media, after initial swelling, they shrink back to normal volume and maintain it for long periods of time. The lower limit of osmolarity at which this “volume adaptation” will occur lies between 140 and 185 mosM. The “volume adaptation” is associated with a loss of cellular K+ probably due to a transient increase in K+ permeability and to loss of associated anions and osmotically obliged water. Partial dissipation of the large gradient of K+ between cells and medium by pre-exposure to ouabain or to K+-free medium results in a diminished capacity to adapt. After the shrinking phase is completed, a new steady state is established with a reduced cellular K+ content, normal Na+, normal K+-permeability, and a reduced activity of the Na+ − K+ transport system. When adapted cells are returned to normal medium, an initial shrinking is followed by a re-swelling to normal size, associated with a gain in K+ content, presumably due to the return to normal activity of the Na+ − K+ transport system. 相似文献
14.
The radioprotector WR-1065 (2-[(aminopropyl)amino]ethanethiol) is known to protect mammalian cells from the cytotoxic and mutagenic effects of radio- and chemotherapeutic agents, but the exact mechanisms involved in this protection are not fully known. To help determine the effects of WR-1065 alone on cells, we examined its effect on a variety of cellular processes. Incubation of AA8 cells in 4 mM WR-1065 did not significantly affect the rate of DNA synthesis. Autoradiographic analysis of heavily labeled (S-phase population) nuclei of AA8 cells showed no significant difference in the S-phase population of WR-1065-treated versus control cells for up to 3 h. An examination of the effect of WR-1065 on repair synthesis, as measured by unscheduled DNA synthesis (UDS) in cells exposed to 15 Gy, showed no difference between treated and sham-treated cells for up to 2 h exposure. A significant reduction in the amount of UDS was seen in cells treated with the protector for 2.5 and 3 h. Incubation of cells in WR-1065 did alter the cell cycle distributions. An increase in the G2-phase population with a corresponding decrease in the G1-phase population was observed in cells incubated up to 3 h in the presence of 4 mM WR-1065. After the removal of WR-1065 at 3 h, a redistribution of the cells throughout the cell cycle occurred as has been observed in cells treated with other synchronization agents. These data suggest that perturbations in cell cycle progression, rather than direct effects on the rate of DNA synthesis, could play a role in the increased survival and reduced mutation frequencies observed in the presence of WR-1065. 相似文献
15.
J T Lett A B Cox M D Story U K Ehmann E A Blakely 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1989,237(1286):27-42
Synchronous suspensions of the radiosensitive S/S variant of the L5178Y murine leukaemic lymphoblast at different positions in the cell cycle were exposed aerobically to segments of heavy-ion beams (20Ne, 28Si, 40Ar, 56Fe and 93Nb) in the Bragg plateau regions of energy deposition. The incident energies of the ion beams were in the range of 460 +/- 95 MeV u-1, and the calculated values of linear energy transfer (LET infinity) for the primary nuclei in the irradiated samples were 33 +/- 3, 60 +/- 3, 95 +/- 5, 213 +/- 21 and 478 +/- 36 keV microns-1, respectively; 280 kVp X-rays were used as the baseline radiation. Generally, the maxima or inflections in relations between relative biological effectiveness (RBE) and LET infinity were dependent upon the cycle position at which the cells were irradiated. Certain of those relations were influenced by post-irradiation hypothermia. Irradiation in the cell cycle at mid-G1 to mid-G1 + 3 h, henceforth called G1 to G1 + 3 h, resulted in survival curves that were close approximations to simple exponential functions. As the LET infinity was increased, the RBE did not exceed 1.0, and by 478 keV microns-1 it had fallen to 0.39. Although similar behaviour has been reported for inactivation of proteins and certain viruses by ionizing radiations, so far the response of the S/S variant is unique for mammalian cells. The slope of the survival curve for X-photons (D0: 0.27 Gy) is reduced in G1 to G1 + 3 h by post-irradiation incubation at hypothermic temperatures and reaches a minimum (Do: 0.51 Gy) at 25 degrees C. As the LET infinity was increased, however, the extent of hypothermic recovery was reduced progressively and essentially was eliminated at 478 keV microns-1. At the cycle position where the peak of radioresistance to X-photons occurs for S/S cells, G1 + 8 h, increases in LET infinity elicited only small increases in RBE (at 10% survival), until a maximum was reached around 200 keV microns-1. At 478 keV microns-1, what little remained of the variation in response through the cell cycle could be attributed to secondary radiations (delta rays) and smaller nuclei produced by fragmentation of the primary ions. 相似文献
16.
The stationary phase of the mammalian cells L5178Y in culture can be divided into two stages: (a) an early phase characterized by the decline of mitotic index, followed by a stabilization of the cell number, and (b) a late stage, occurring several hours after the flattening of the growth curve, during which dead or dying cells appear in the cultures. The estimates of rates of cell progress showed that the rates from G1 to S and from G2 to M were affected in the early stationary phase. The main cause of cessation of increase in cell number in the early stationary phase is resulted from the decline in mitotic index, which is caused by prolongation of the G2 period. The importance of the G2 stage in regulating the cell growth is discussed in relation to other known situations in the literature. 相似文献
17.
18.
The effect of chloramphenicol on progression through the cell cycle of L5178Y cells was investigated. Using eosin staining as a viability index, G2 cells were shown to be specifically killed at a concentration of chloramphenicol generally used to study mitochondrial protein synthesis. Pretreating cells with chloramphenicol induced resistance to this G2 lethality. 相似文献
19.