首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromaffin cells both recently isolated or in culture present a high-affinity adenosine transporter with a Km value of 1 microM. When cells were exposed to nerve growth factor (NGF; 10 ng/ml), the adenosine transporter affinity decreased to 3 microM. This value was maintained from 3 days after plating to the end of the culture period. A change in the transport capacity was observed, with a significant increase (approximately 200-260%) in NGF-cultured cells throughout the period studied.  相似文献   

2.
Effect of P2Y Agonists on Adenosine Transport in Cultured Chromaffin Cells   总被引:1,自引:0,他引:1  
Abstract: Adenosine transport in cultured chromaffin cells was inhibited by purinergic P2y-receptor agonists without significant changes in the affinity constant, the values being between 1 ± 0.4 and 1.6 ± 0.6 μM. The Vmax parameter was modified significantly, being 40 ± 1.0, 26 ± 5.0, 32 ± 3.0, and 22 ± 4.7 pmol/106 cells/min for control, adenosine-5′-O-(2-thiodiphosphate), 5′-adenylylimidodiphosphate, and P1,P4-di(adenosine-5′-) tetraphosphate (Ap4A) (100 μM for every effector), respectively. Ap4A, a physiological ligand for P2y receptors in chromaffin cells, showed the highest inhibitory effect (45%). This transport inhibition is explained by an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the activation of protein kinase C (PKC). Experiments of [Ca2+]i measurement with the fura-2 technique showed that P2y agonists, as well as bradykinin, were able to increase [Ca2+]i, this effect being independent of the presence of extracellular Ca2+. The peptide bradykinin, determined to be coupled to phosphatidylinositol hydrolysis and internal Ca2+ mobilization in chromaffin cells, exhibited a behavior similar to that of P2y agonists in adenosine transport inhibition (39%). P2y agonists and bradykinin increased PKC activity associated with the membrane fraction (about 50% increase in particulate PKC activity with respect to controls). The present studies suggest that adenosine transport is regulated by P2y-purinergic receptors mediated via Ca2+ mobilization and PKC activation.  相似文献   

3.
The adenosine receptors in the plasma membrane of chromaffin cells from bovine adrenal medulla were characterized. The presence of A1 receptors was discounted owing to the absence of R-[3H]phenylisopropyladenosine (R-PIA) and [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]-DPCPX) binding. The binding of the specific A2a ligand CGS-21680 was low. In contrast, the binding of 5'-(N-[3H]-ethylcarboxamidoadenosine ([3H]NECA) was relatively high (1.7 pmol/mg of protein at a ligand concentration up to 90 nM). This binding did not correspond to non-adenosine receptor NECA binding sites because the specific [3H]-NECA binding was similar when unlabeled adenosine, NECA, or R-PIA was used to measure the nonspecific binding. The rank order of potency of different ligands for the displacement of specific [3H]NECA binding was DPCPX greater than NECA greater than chloroadenosine greater than R-PIA greater than theophylline = CGS-21680. These results indicate that the receptors present on the plasma membrane of chromaffin cells are exclusively of the A2b subtype.  相似文献   

4.
Abstract: The kinetic characteristics of [3H]adenosine uptake, the extent to which accumulated [3H]adenosine was metabolized, the effects such metabolism had on measurements of apparent Michaelis-Menten kinetic values of KT and Vmax, and the sensitivities with which nucleoside transport inhibitors blocked [3H]adenosine accumulations were determined in cultured human fetal astrocytes. KT and Vmax values for accumulations of [3H]-labeled purines using 15-s incubations in the absence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and the adenosine kinase inhibitor 5′-iodotubercidin (ITU) were 6.2 µM and 0.15 nmol/min/mg of protein for the high-affinity and 2.6 mM and 21 nmol/min/mg of protein for the low-affinity components respectively. In the presence of EHNA and ITU, where <4% of accumulated [3H]adenosine was metabolized, transport per se was measured, and kinetic values for KT and Vmax were 179 µM and 5.2 nmol/min/mg of protein, respectively. In the absence of EHNA and ITU, accumulated [3H]adenosine was rapidly metabolized to AMP, ADP, and ATP, and caused an appearance of “concentrative” uptake in that the intracellular levels of [3H]-labeled purines (adenosine plus its metabolites) were 1.4-fold higher than in the medium. No apparent concentrative accumulations of [3H]adenosine were found when assays were conducted using short incubation times in the absence or presence of EHNA and ITU. The nucleoside transport inhibitors dipyridamole (DPR), nitrobenzylthioinosine (NBI), and dilazep biphasically inhibited [3H]adenosine transport; for the inhibitor-sensitive components the IC50 values were 0.7 nM for NBI, 1.3 nM for DPR, and 3.3 nM for dilazep, and for the inhibitor-resistant component the IC50 values were 2.5 µM for NBI, 5.1 µM for dilazep, and 39.0 µM for DPR. These findings, in cultured human fetal astrocytes, represent the first demonstration of inhibitor-sensitive and -resistant adenosine transporters in nontransformed human cells.  相似文献   

5.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   

6.
ATP, ADP, and adenosine have been found to inhibit acetylcholine-stimulated secretion from isolated cells of bovine adrenal medulla (chromaffin cells). Maximal inhibition is approximately 30% under the conditions studied; half-maximal inhibition occurs at nucleotide concentration in the micromolar range. Cells must be incubated with ATP for approximately 90 s for maximal inhibition, but inhibition by adenosine occurs much faster, an observation suggesting the possibility that ATP and ADP exert their effect after being converted to adenosine. Experiments with cells preloaded with the fluorescent calcium chelator quin 2 indicate that external ATP can diminish the rise in cytosolic Ca2+ concentration that follows stimulation by acetylcholine.  相似文献   

7.
Adenosine levels increase in brain during cerebral ischemia, and adenosine has receptor-mediated neuroprotective effects. This study was performed to test the hypothesis that nitrobenzylthioinosine (NBMPR), a selective and potent inhibitor of one adenosine transporter subtype termed ENT1, or es, can protect against ischemic neuronal injury by enhancing adenosine levels and potentiating adenosine receptor-mediated effects, including attenuation of the cellular production and release of tumor necrosis factor-alpha (TNF-alpha). In rats, the phosphorylated prodrug form of NBMPR, NBMPR-phosphate, or saline was administered by intracerebroventricular injection 30 min before forebrain ischemia. Seven days following the ischemic episode, rats were killed, and neuronal damage in the CA1 region of the hippocampus was assessed. The number of pyramidal neurons was significantly (p < 0.001) greater in the NBMPR-P treatment group. A trend toward protection was still evident at 28 days postreperfusion. Adenosine increased significantly during ischemia to levels eight- to 85-fold above basal. NBMPR-P treatment did not cause statistically significant increases in ischemic adenosine levels; however, this treatment tended to increase adenosine levels in all brain regions at 7 min postreperfusion. Ischemia-induced expression of TNF-alpha was not altered by NBMPR-P treatment, and the nonselective adenosine receptor antagonist 8-(p-sulfophenyl) theophylline did not abolish the neuroprotective effects of NBMPR-P treatment. These data indicate that NBMPR can protect CA1 pyramidal neurons from ischemic death without statistically significant effects on adenosine levels or adenosine receptor-mediated inhibition of the proinflammatory cytokine TNF-alpha.  相似文献   

8.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   

9.
The effect of reserpine on the processing of the secretory granule protein chromogranin A (CgA) in isolated bovine adrenal chromaffin cells was investigated using two radioimmunoassays employing site-specific antisera. The two antisera were directed against closely associated regions of the CgA molecule which would be exposed by specific processing: antiserum L331 was raised against the C-terminus of the regulatory peptide pancreastatin, and the second antiserum, L300, was raised against the synthetic peptide [Tyr0]CgA306-313 (YLSKEWEDA), a sequence that lies immediately C-terminal to pancreastatin and adjacent to a dibasic amino acid cleavage site. Chronic reserpine treatment of chromaffin cells produced a time- and dose-dependent increase in processing, as demonstrated by an increase in pancreastatin- and YLSKEWEDA-immunoreactivity (ir). The reserpine-induced rise in pancreastatin-ir was due predominantly to an increase in pancreastatin 1-47, whereas the rise in YLSKEWEDA-ir was due to increases in three polypeptides: a 51-kDa YLSKEWEDA-ir polypeptide, CgA297-313, and CgA248-313. The latter predominated. The action of reserpine on both pancreastatin- and YLSKEWEDA-ir was found to be largely inhibited by the protein synthesis inhibitor cycloheximide. The results show that treatment of isolated chromaffin cells with reserpine induces both the selective proteolytic processing and peptidyl-glycine amidation of CgA and its derived fragments. As reserpine has a similar effect on proenkephalin in chromaffin cells, the results suggest that reserpine induces a general increase in the activity of the processing enzymes, partially by an increase in protein synthesis.  相似文献   

10.
Earlier studies have shown that bradykinin stimulated release of catecholamines from chromaffin cells by an influx of calcium through dihydropyridine-insensitive channels, and also that bradykinin stimulated (poly)phosphoinositide hydrolysis. To investigate membrane-bound second messengers in chromaffin cells, and to elucidate any role these may play in stimulus-secretion coupling, we have studied the influence of bradykinin on diacylglycerol and phosphatidic acid (PA). Using equilibrium labelling of primary cultures of chromaffin cells with [3H]arachidonic acid or [3H]glycerol, we found no influence of bradykinin (10 nM) on labelled diacylglycerol formation, either in the presence or absence of inhibitors of diacylglycerol lipase or kinase. However, when we used cells prelabelled with 32Pi for 2.5 h, we found that bradykinin produced a substantial stimulation of label found in PA, with an EC50 value of about 1 nM. This bradykinin stimulation of [32P]PA formation was only partially dependent on extracellular calcium, in contrast to the smaller response to nicotine, which was completely dependent on extracellular calcium. Short (10 min) pretreatment with tetradecanoylphorbol acetate (TPA) almost completely eliminated the bradykinin-stimulated formation of inositol phosphates, but failed to affect bradykinin stimulation of label in PA, suggesting that PA production in response to bradykinin is not downstream of phospholipase C activation. TPA alone failed to stimulate [32P]PA substantially, whereas long-term (24 or 48 h) treatment with TPA failed to attenuate the response to bradykinin. Diacylglycerol kinase inhibitors were also without effect on the bradykinin stimulation of [32P]PA. These results suggest that bradykinin stimulates PA production by a mechanism independent of the activation of protein kinase C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A procedure is described for the establishment of stable primary cultures of bovine chromaffin cells on microcarrier beads. The cells flatten and send out processes with varicosities over a few days and maintain their catecholamine content for 2 weeks. The beads may be incorporated into a superfusion apparatus with a chamber volume of about 150 microliters, enabling the efficient perfusion of a high density of cells. The response to the introduction of nicotine and high potassium into the perfusing medium is shown to be more rapid and more transient than hitherto described, with each secretagogue producing a different degree of preferential stimulation of noradrenaline-secreting cells.  相似文献   

12.
Nucleoside transport processes may play a role in regulating endogenous levels of the inhibitory neuromodulator adenosine in brain. The cDNAs encoding species homologues of one member of the equilibrative nucleoside transporter (ENT) gene family have recently been isolated from rat (rENT1) and human (hENT1) tissues. The current study used RT-PCR, northern blot, in situ hybridization, and [3H]nitrobenzylthioinosine autoradiography to determine the distribution of mRNA and protein for ENT1 in rat and human brain. Northern blot analysis indicated that hENT1 mRNA is widely distributed in adult human brain. 35S-labeled sense and antisense riboprobes, transcribed from a 153-bp segment of rENT1, were hybridized to fresh frozen coronal sections from adult rat brain and revealed widespread rENT1 mRNA in pyramidal neurons of the hippocampus, granule neurons of the dentate gyrus, Purkinje and granule neurons of the cerebellum, and cortical and striatal neurons. Regional localization in rat brain was confirmed by RT-PCR. Thus, ENT1 mRNA has a wide cellular and regional distribution in brain, indicating that this nucleoside transporter subtype may be important in regulating intra- and extracellular levels of adenosine in brain.  相似文献   

13.
The metabotropic glutamate receptors 5 (mGlu5Rs) and the adenosine A2A receptors (A2ARs) have been reported to functionally interact in the striatum. The aim of the present work was to verify the hypothesis that the state of activation of A2A Rs could influence mGlu5R-mediated effects in the striatum. In electrophysiological experiments (extracellular recording in rat corticostriatal slices), the ability of the selective mGlu5R agonist CHPG to potentiate the reduction of the field potential amplitude induced by NMDA was prevented not only by the selective mGlu5R antagonist MPEP, but also by the selective A2AR antagonist ZM 241385. Analogously, the application of CHPG potentiated NMDA-induced toxicity (measured by LDH release) in cultured striatal neurons, an effect that was abolished by both MPEP and ZM 241385. Finally, the A2AR agonist CGS 21680 potentiated CHGP effects, an action that was reproduced and abolished, respectively, by forskolin (an activator of the cAMP/protein kinase A, PKA, pathway) and KT 5720 (a PKA inhibitor). The results indicate that A2ARs exert a permissive role on mGlu5R-induced effects in the striatum. Such an interaction may represent an additional target for the development of therapeutic strategies towards striatal disorders.  相似文献   

14.
Treatment of adrenal chromaffin cells with forskolin (0.1-10 microM) stimulated cyclic AMP levels, reduced the maximal stimulation of release of noradrenaline by nicotine, and increased release in response to elevated external potassium and the calcium ionophore A23187. The presence of the phosphodiesterase inhibitor Ro 20-17-24 with forskolin potentiated both the stimulation of cyclic AMP and the inhibition of nicotine-induced noradrenaline release. Dibutyryl cyclic AMP, and the elevation of cyclic AMP with prostaglandin E1, also attenuated nicotine-stimulated release. However, when the stimulation of intracellular cyclic AMP production by prostaglandin E1 was potentiated by low levels of forskolin, there was not a concomitant potentiation of effect on noradrenaline release. Dideoxyforskolin, an analogue of forskolin which does not stimulate adenylate cyclase, inhibited both potassium- and nicotine-stimulated release, probably by a mechanism unrelated to the action of forskolin in these experiments. Using Fura-2 to estimate free intracellular calcium levels, both forskolin and dideoxyforskolin (at 10 microM) reduced the calcium transient in response to nicotine. These results support a model in which elevation of cyclic AMP inhibits the activation of nicotinic receptors, but augments stimulus secretion coupling downstream of calcium entry. The data, however, do not indicate a simple relationship between total intracellular cyclic AMP levels and the attenuation of nicotinic stimulation of release.  相似文献   

15.
Adrenal medullary chromaffin cells were maintained under conditions known to increase their cellular levels of enkephalin-containing peptides and the effects of these treatments on another chromaffin vesicle component, dopamine beta-hydroxylase, were examined. Catecholamine-depleting drugs, such as tetrabenazine, and cyclic nucleotide-elevating drugs, including forskolin, 8-bromo-cyclic AMP, and theophylline, increase chromaffin cell enkephalin-containing peptide levels but fail to increase dopamine beta-hydroxylase. In contrast, insulin treatment increases the levels of both enkephalin-containing peptides and dopamine beta-hydroxylase. The increased amounts of enkephalin-containing peptides produced by tetrabenazine and by insulin are stored in subcellular particles with properties identical to chromaffin vesicles on density-gradient centrifugation. These results suggest that following insulin treatment chromaffin cells synthesize new chromaffin vesicles with a full complement of enkephalin-containing peptides, but that after treatment with catecholamine-depleting or cyclic nucleotide-related agents enkephalin-containing peptides can be inserted into preexisting vesicles or that new vesicles, made as a part of the normal turnover of cellular components, contain elevated peptide levels.  相似文献   

16.
17.
The purpose of this study was to characterize the role of adenosine-dependent regulation of anion secretion in Calu-3 cells. RT-PCR studies showed that Calu-3 cells expressed mRNA for A2A and A2B but not A1 or A3 receptors, and for hENT1, hENT2 and hCNT3 but not hCNT1 or hCNT2 nucleoside transporters. Short-circuit current measurements indicated that A2B receptors were present in both apical and basolateral membranes, whereas A2A receptors were detected only in basolateral membranes. Uptake studies demonstrated that the majority of adenosine transport was mediated by hENT1, which was localized to both apical and basolateral membranes, with a smaller hENT2-mediated component in basolateral membranes. Whole-cell current measurements showed that application of extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR), a selective inhibitor of hENT1-mediated transport, had similar effects on whole-cell currents as the application of exogenous adenosine. Inhibitors of adenosine kinase and 5'-nucleotidase increased and decreased, respectively, whole-cell currents, whereas inhibition of adenosine deaminase had no effect. Single-channel studies showed that NBMPR and adenosine kinase inhibitors activated CFTR Cl- channels. These results suggested that the equilibrative nucleoside transporters (hENT1, hENT2) together with adenosine kinase and 5'-nucleotidase play a crucial role in the regulation of CFTR through an adenosine-dependent pathway in human airway epithelia.  相似文献   

18.
Abstract: We studied the effect of cultured endothelial cells on the secretion of catecholamines by cultured bovine chromaffin cells. Chromaffin cell catecholamine secretion was stimulated by either boluses of potassium (K+) or the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP). Endothelial cells inhibited the catecholamine release and stimulatory effects of K+ and DMPP. This inhibition increased with time, and in 25 min the initial stimulated secretory response (100%) to 30 m M K+ or 25 μ M DMPP dropped to 45 ± 3% and 53.5 ± 2.3%, respectively. This endothelial cell-induced inhibition was blocked by the nitric oxide synthase inhibitors N -nitro- l -arginine methyl ester ( l -NAME) and N -monoethyl- l -arginine ( l -NMMA), and by the guanylate cyclase inhibitor methylene blue, indicating that the l -arginine/nitric oxide/ cyclic GMP pathway is involved in this endothelial cell-chromaffin cell interaction. In the absence of endothelial cells, incubation of chromaffin cells with l -NAME, l -NMMA, or methylene blue also augmented the secretagogue-induced catecholamine secretion, indicating that nitric oxide from chromaffin cells could be implicated in an autoinhibitory process of catecholamine release. These results provide indirect evidence for the presence of nitric oxide synthase in bovine adrenomedullary chromaffin cells. Our results show that there is an autoinhibitory mechanism of catecholamine release in chromaffin cells and that an additional level of inhibition is observed when cultured vascular endothelial cells are present. These two inhibitory processes may have different origins, but they appear to converge into a common pathway, the l -arginine/nitric oxide synthase/guanylate cyclase pathway.  相似文献   

19.
Cells of the adrenal medulla release not only catecholamines but also high concentrations of neuropeptides and nucleotides. Chromaffin cells, like many neuronal cells, have a diversity of receptors: adrenergic receptors, peptide receptors, histamine receptors, and dopamine receptors. We recently reported that these cells have nucleotide receptors that can mediate inhibition of the secretory response. The present studies show that adenosine, in the presence of enabling concentrations of forskolin, can potently enhance response to nicotinic stimulation. Neither adenosine nor forskolin alone produces a significant effect. A marked rise in intracellular cyclic AMP (cAMP) concentration is associated with the enhancement of secretion caused by forskolin plus adenosine. A phosphodiesterase inhibitor, Ro 20-1724, used together with forskolin produces significant increases in both cellular cAMP content and catecholamine secretion. However, the adenosine agonist 5'-N-ethylcarboxyadenosine elevates cellular cAMP content in the presence of forskolin without having any positive effect on secretion. This finding suggests that the rise in cAMP level may not be the sole cause of the increase in secretion by adenosine.  相似文献   

20.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号