首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methionine aminopeptidase, known to be encoded by single genes in prokaryotes, is a cobalt-dependent enzyme that catalyzes the removal of N-terminal methionine residues from nascent polypeptides. Three ORFs encoding putative methionine aminopeptidases from the genome of cyanobacterium Synechocystis sp. strain PCC6803, designated as slr0786 (map-1), slr0918 (map-2) and sll0555 (map-3) were cloned and expressed in Escherichia coli. The purified recombinant proteins encoded by map-1 and map-3 had much higher methionine aminopeptidase activity than the recombinant protein encoded by map-2. Comparative analysis revealed that the three recombinant enzymes differed in their substrate specificity, divalent ion requirement, pH, and temperature optima. The broad activities of the iso-enzymes are discussed in light of the structural similarities with other peptidase families and their levels of specificity in the cell. Potential application of cyanobacterial MetAPs in the production of recombinant proteins used in medicine is proposed. This is the first report of a prokaryote harboring multiple methionine aminopeptidases.Abbreviations map Gene encoding methionine aminopeptidase - MetAP Methionine aminopeptidase - eMetAP-Ia Escherichia coli methionine aminopeptidase type Ia - yMetAP-Ib Yeast methionine aminopeptidase type Ib - yMetAP-IIa Yeast methionine aminopeptidase type IIa - hMetAP-IIb Human methionine aminopeptidase type IIb - pfMetAP–IIa Pyrococcus furiosis methionine aminopeptidase type Ia - bst MetAP-Ia Bacillus stearothermophilus methionine aminopeptidase type Ia - c1MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-1 - c2MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-2 - c3MetAP-Ib Cyanobacterial methionine aminopeptidase type Ib, ncoded by map-3  相似文献   

2.
A methionine aminopeptidase (MAP) found in rat liver microsomes behaves as membrane-bound enzyme. Triton-solubilized MAP when chromatographed on DEAE-cellulose columns was separated from other microsomal arylamidases. The enzyme hydrolyzes N-terminal methionine from methionyl-lysyl-bradykinin (Met-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) being then characterized as a typical aminopeptidase. It also shows preferential arylamidase activity upon Met-2-naphthylamide. MAP was activated by 2-mercaptoethanol and inhibited by p-hydroxymercuribenzoate. Contrarily to other well characterized aminopeptidases, MAP was not affected by EDTA, puromycin or bestatin. Altogether these data suggest that MAP is a unique microsomal enzyme distinct from other previously described aminopeptidases. It could be involved in the removal of methionine from nascent peptides during protein synthesis.  相似文献   

3.
We localized the methionine aminopeptidase (map) gene on the Escherichia coli chromosome next to the rpsB gene at min 4. Genetically modified strains with the chromosomal map gene under lac promoter control grew only in the presence of the lac operon inducer isopropyl-beta-thiogalactoside. Thus, methionine aminopeptidase is essential for cell growth.  相似文献   

4.
5.
Amino-terminal processing in the yeast Saccharomyces cerevisiae has been investigated by examining numerous mutationally altered forms of iso-1-cytochrome c. Amino-terminal residues of methionine were retained in sequences having penultimate residues of arginine, asparagine, glutamine, isoleucine, leucine, lysine, and methionine; in contrast, the amino-terminal methionine residues were exercised from residues of alanine, glycine, and threonine and were partially excised from residues of valine. The results suggest the occurrence of a yeast aminopeptidase that removes amino-terminal residues of methionine when they precede certain amino acids. A systematic search of the literature for amino-terminal sequences formed at initiation sites suggests the hypothetical yeast aminopeptidase usually has the same specificity as the amino peptidase from bacteria and higher eukaryotes. Our results and the results from the literature search suggest that the aminopeptidase cleaves amino-terminal methionine when it precedes residues of alanine, glycine, proline, serine, threonine, and valine but not when it precedes residues of arginine, asparagine, aspartic acid, glutamine glutamic acid, isoleucine, leucine, lysine, or methionine. In contrast to the normal iso-1-cytochrome c and in contrast to the majority of the mutationally altered proteins, certain forms were acetylated including the following sequences: acetyl(Ac)-Met-Ile-Arg-, Ac-Met-Ile-Lys, Ac-Met-Met-Asn-, and Ac-Met-Asn-Asn-. We suggest yeast contains acetyltransferases that acetylates these mutant forms of iso-1-cytochromes c because their amino-terminal regions resemble the amino-terminal regions of natural occurring proteins which are normally acetylated. The lack of acetylation of closely related sequences suggest that the hypothetical acetyltransferases are specific for certain amino-terminal sequences and that the 3 amino-terminal residues may play a critical role in determining these specificities.  相似文献   

6.
In human polymorphonuclear leukocytes a methionine, leucine, arginine, phenylalanine and alanine aminopeptidase activities were detected, both in cytosol and secondary granules. All activities were EDTA sensitive and their pH optima were in the range of pH 6.5 to 8.6. In the cytosol two enzymes could be distinguished, broad substrate specificity aminopeptidase of pH 4.7-4.9 and a chloride dependent arginine aminopeptidase of pI 5.3-5.5. The granules contain aminopeptidase of pI 4.0-4.6 and of pI 9.8-10.2, different from those in the cytosol. Among them broad specificity aminopeptidases and possibly specific methionine and leucine aminopeptidases could be discerned.  相似文献   

7.
In an effort to differentiate between alternative mechanistic schemes that have been postulated for Escherichia coli methionine aminopeptidase (eMetAP), the modes of binding of a series of products and phosphorus-based transition-state analogues were determined by X-ray crystallography. Methionine phosphonate, norleucine phosphonate, and methionine phosphinate bind with the N-terminal group interacting with Co2 and with the respective phosphorus oxygens binding between the metals, interacting in a bifurcated manner with Co1 and His178 and hydrogen bonded to His79. In contrast, the reaction product methionine and its analogue trifluoromethionine lose interactions with Co1 and His79. The interactions with the transition-state analogues are, in general, very similar to those seen previously for the complex of the enzyme with a bestatin-based inhibitor. The mode of interaction of His79 is, however, different. In the case of the bestatin-based inhibitor, His79 interacts with atoms in the peptide bond between the P(1)' and P(2)' residues. In the present transition-state analogues, however, the histidine moves 1.2 A toward the metal center and hydrogen bonds with the atom that corresponds to the nitrogen of the scissile peptide bond (i.e., between the P(1) and P(1)' residues). These observations tend to support one of the mechanistic schemes for eMetAP considered before, although with a revision in the role played by His79. The results also suggest parallels between the mechanism of action of methionine aminopeptidase and other "pita-bread" enzymes including aminopeptidase P and creatinase.  相似文献   

8.
H Gainer  J T Russell  Y P Loh 《FEBS letters》1984,175(1):135-139
Secretory vesicles isolated from the neural and intermediate lobes of the bovine pituitary contained a membrane-bound aminopeptidase activity which cleaved arginine from beta-LPH60-65 (Arg-Tyr-Gly-Gly-Phe-Met) and Arg-MCA. Neither methionine enkephalin (Tyr-Gly-Gly-Phe-Met) nor Substance P, which has an N-terminal arginine followed by a proline, could serve as substrates for this aminopeptidase activity; nor could cathepsin B-like or chymotrypsin-like enzyme activities be detected in the vesicle preparations. Maximal enzyme activity was at pH 6.0, and the activity was inhibited by EDTA, stimulated by Co2+ and Zn2+, but was unaffected by leupeptin, pepstatin A, phenylmethylsulfonyl fluoride and p-chloromercuribenzenesulfonate, suggesting that the enzyme is a metalloaminopeptidase. The presence of this aminopeptidase activity in secretory vesicles suggests that it may be involved in peptide prohormone processing.  相似文献   

9.
The group of aminopeptidase bands from Tineola bisselliella larvae with highest electrophoretic mobility in polyacrylamide gels were purified further and partially separated by ion exchange chromatography. Three aminopeptidase bands were present in this material and were very similar with respect to their pH optima (7-7), their molecular weight of 94,000, their responses to metal ions and enzyme inhibitors and in their substrate specificity requirements. Kinetic constants were obtained for the hydrolysis of 17 different alpha-aminoacyl-beta-naphthylamides by these aminopeptidases, the most favoured substrates being the derivatives of alanine, methionine, proline, leucine, glycine, glutamic acid, lysine and arginine. The enzymes also hydrolyse amino acid amides, dipeptides, dipeptide amides, tripeptides and oligopeptides at the N-terminal end. These enzymes differ from the other aminopeptides in T. bisselliella in being able to hydrolyse bonds involving proline.  相似文献   

10.
N-formyl-methionine termini are formed in the initiation reaction of bacterial protein synthesis and processed during elongation of the nascent polypeptide chain. We report that the formyl group must be removed before the methionine residue can be cleaved by methionine aminopeptidase. This has long been implicitly assumed, but that assumption was based on inconclusive data and was in apparent conflict with more recently published data. We demonstrate that the Salmonella typhimurium methionine aminopeptidase is totally inactive on an N-formyl-methionyl peptide in vitro, and present a detailed characterization of the substrate specificity of this key enzyme by use of a very sensitive and quantitative assay. Finally, a reporter protein expressed in a strain lacking peptide deformylase was shown to retain the formyl group confirming the physiological role of the deformylase.  相似文献   

11.
Bacterial aminopeptidases: Properties and functions   总被引:19,自引:0,他引:19  
Abstract: Aminopeptidases are exopeptidases that selectively release N-terminal amino acid residues from polypeptides and proteins. Bacteria display several aminopeptidasec activities which may be localised in the cytoplasm, on membranes, associated with the cell envelope or secreted into the extracellular media. Studies on the bacterial aminopeptide system have been carried out over the past three decades and are significant in fundamental and biotechnological domains. At present, about one hundred bacterial aminopeptidases have been purified and biochemically studied. About forty genes encoding aminopeptidases have also been cloned and characterised. Recently, the three-dimensional structure of two aminopeptidases, the methionine aminopeptidase from Escherichia coli and the leucine aminopeptidase from Aeromonas proteolytica , have been elucidated by crystallographic studies. Most of the quoted studies demonstrate that bacterial aminopeptidases generally show Michaelis-Menten kinetics and can be placed into either of two categories based on their substrate specificity: broad or narrow. These enzymes can also be classified by another criterium based on their catalytic mechanism: metallo-, cysteine- and serine-aminopeptidases, the former type being predominant in bacteria. Aminopeptidases play a role in several important physiological processes. It is noteworthy that some of them take part in the catabolism of exogenously supplied peptides and are necessary for the final steps of protein turnover. In addition, they are involved in some specific functions, such as the cleavage of N-terminal methionine from newly synthesised peptide chains (methionine aminopeptidases), the stabilisation of multicopy ColE1 based plasmids (aminopeptidase A) and the pyroglutamyl aminopeptidase (Pcp) present in many bacteria and responsible for the cleavage of the N-terminal pyroglutamate.  相似文献   

12.
A number of model isopeptides containing oligo(methionine) chains varying in length (2-5 residues) covalently linked to the epsilon-amino group of lysine were synthesized by solid-phase procedures. Hydrolysis of these peptides by pepsin, chymotrypsin, cathepsin C (dipeptidyl peptidase IV) and intestinal aminopeptidase N was investigated using high-performance liquid chromatography to identify and quantify the hydrolysis products. Methionine oligomers grafted onto lysine were cleaved to tripeptides by pepsin. Chymotrypsin preferentially hydrolyzed the methionyl-methionine bond preceding the isopeptide bond. Cathepsin C released dimethionyl units from the covalently attached polymers. Intestinal aminopeptidase caused efficient hydrolysis of both peptides and isopeptide bonds although free methionine decreased the cleavage of the latter bond. Hydrophobic characteristics of oligo(methionine) chains promoted enzyme-catalyzed transpeptidations resulting probably from acyl-transfer-type reactions. Complementary hydrolysis of the isopeptides by these digestive enzymes suggests that covalent attachment of oligo(amino acid)s to food proteins may improve their nutritional value.  相似文献   

13.
A yeast gene for a methionine aminopeptidase, one of the central enzymes in protein synthesis, was cloned and sequenced. The DNA sequence encodes a precursor protein containing 387 amino acid residues. The mature protein, whose NH2-terminal sequence was confirmed by Edman degradation, consists of 377 amino acids. The function of the 10-residue sequence at the NH2 terminus, containing 1 serine and 6 threonine residues, remains to be established. In contrast to the structure of the prokaryotic enzyme, the yeast methionine aminopeptidase consists of two functional domains: a unique NH2-terminal domain containing two motifs resembling zinc fingers, which may allow the protein to interact with ribosomes, and a catalytic COOH-terminal domain resembling other prokaryotic methionine aminopeptidases. Furthermore, unlike the case for the prokaryotic gene, the deletion of the yeast MAP1 gene is not lethal, suggesting for the first time that alternative NH2-terminal processing pathway(s) exist for cleaving methionine from nascent polypeptide chains in eukaryotic cells.  相似文献   

14.
An aminopeptidase was isolated from a soil fungus, which specifically cleaves the unnatural N-terminal methionine in recombinant human growth hormone. Reaction mixtures with different ratios of aminopeptidase to recombinant methionyl human growth hormone showed that the removal of N-terminal methionine was complete at 1:200 (w/w), and more than 90% complete at ratios up to 1:2000 (w/w) when incubated for 24 h at 37°C. The data indicate that the aminopeptidase we have purified can be used for the efficient conversion of unnatural recombinant proteins to their natural form. Received 18 September 1997/ Accepted in revised form 17 April 1998  相似文献   

15.
The effect of 2,6-dichloro-4-nitrophenol (DCNP), an inhibitor of phenol sulphotransferases (EC 2.8.2.-), on the biosynthesis of aminopeptidase N (EC 3.4.11.2) was studied in organ-cultured pig intestinal mucosal explants. At 50 microM DCNP did not affect protein synthesis but it decreased incorporation of [35S]sulphate into aminopeptidase N and other major microvillar hydrolases by 70-85% compared with controls, indicating an inhibition of their post-translational tyrosine sulphation. In labelling experiments with [35S]methionine from 0.5 to 5 h, DCNP was tested for its possible influence on synthesis, processing and microvillar expression of aminopeptidase N, but no effect on any of these parameters could be detected. It can therefore be concluded that tyrosine sulphation is not required (for instance as a sorting signal) for the targeting of newly synthesized enzymes to the microvillar membrane.  相似文献   

16.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

17.
Summary A leucine aminopeptidase was purified to homogeneity fromStreptomyces rimosus culture filtrates, which are waste broth of oxytetracycline bioproduction process. Purification procedure includes ultrafiltration and chromatography on CM-Sephadex, AH-Sepharose and FPLC Mono S column. The enzyme is a monomer with molecular weight of 27,500 Daltons and pI of 7.3, stable in broad pH range and up to 70°C. It is a metallo enzyme dependent on Ca2+ ions for its full activity. By its specificity it is a true aminopeptidase active on amino acid amide, arylamide, peptide and ester bonds. The hydrolysing activity shows preference for leucine at the N-terminal position of substrates, also acts on aromatic acids and methionine, but does not release glycine, proline, acidic amino acids orD-amino acid residues.  相似文献   

18.
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).  相似文献   

19.
Human liver alanine aminopeptidase (EC 3.4.11.14; L-alpha-aminoacyl-peptide hydrolase) catalyzes the stepwise hydrolysis of methionyl-lysyl-bradykinin to yield methionine, lysine, and the limit nonapeptide, bradykinin which is resistant to further hydrolytic cleavage by this enzyme. Alanine aminopeptidase also catalyzes the hydrolysis of various neutral amino acid beta-naphthylamides. This enzyme cleaves N-terminal arginyl residues unless the adjacent penultimate residue is proline as is the case for bradykinin. The properties are consistent with the requirements of a kinin converting enzyme. Human alanine aminopeptidase activity is reduced by several beta-lactam antibiotics, with the cloxacillin, oxacillin, and methicillin Ki values being 0.51 mM, 1.6 mM, and 2.4 mM respectively. Our experiments with radioactively labelled penicillin indicate that two moles of antibiotic are bound per mole of enzyme. Neither chromatography of the penicillin-treated enzyme on G-25 Sephadex, treatment of penicillin-G-treated enzyme with penicillinase, nor extensive dilution of cloxacillin-treated enzyme diminished the degree of inactivation produced. Inhibition was obtained with 6-aminopenicillanic acid, which indicated that the penicillin nucleus itself was being bound, but substitutions, as in cloxacillin, could enhance the binding.  相似文献   

20.
Boxem M  Tsai CW  Zhang Y  Saito RM  Liu JO 《FEBS letters》2004,576(1-2):245-250
We have investigated the physiological function of type 2 methionine aminopeptidases (MetAP2) using Caenorhabditis elegans as a model system. A homolog of human MetAP2 was found in the C. elegans genome, which we termed MAP-2. MAP-2 protein displayed methionine aminopeptidase activity and was sensitive to inhibition by fumagillin. Downregulation of map-2 expression by RNAi led to sterility, resulting from a defect in germ cell proliferation. These observations suggest that MAP-2 is essential for germ cell development in C. elegans and that this ubiquitous enzyme may play important roles in a tissue specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号