首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three eukaryotic lineages generally are believed to have plastids that are primary in origin; that is, descended directly from a cyanobacterial endosymbiont. The recovery of these plastids as a monophyletic group in most molecular phylogenetic analyses, along with similarities in genome content and protein targeting mechanisms, have been cited as strong evidence in support of the hypothesis of a single endosymbiotic origin of all plastids. Although these data indeed are consistent with a single plastid origin, they also are consistent with the proposition of multiple endosymbiotic origins. Each hypothesis requires certain evolutionary assumptions in order to be reconciled with all existing data; at present, it is unclear which of these assumptions most likely reflect the historical process that gave rise to plastid diversity. Here we examine similarities in gene content among representatives of the three primary plastid lineages, using as a control the genome of a mitochondrion that almost certainly originated as an independent endosymbiotic association. To minimize metabolic constraints on gene retention we focus on two datasets, ribosomal protein and transfer RNA genes, neither of which is tied directly to specific organellar functions. Analyses of all possible pair‐wise comparisons among the three plastids and mitochondrion indicate that genomic similarities are most consistent with convergent evolution due to constraints on gene loss, rather than with hypothesized shared evolutionary histories. We find no evidence of phylogenetic signal in the pattern of gene loss overlying this convergence. In light of these results, we address other lines of evidence and arguments that have been raised in support of a single plastid origin.  相似文献   

2.
I discuss the evidence for a single origin of primary plastids in the context of a paper in this issue challenging this view, and I review recent evidence concerning the number of secondary plastid endosymbioses and the controversy over whether the relic plastid of apicomplexans is of red or green algal origin. A broad consensus has developed that the plastids of green algae, red algae, and glaucophytes arose from the same primary, cyanobacterial endosymbiosis. Although the analyses in this issue by Stiller and colleagues firmly undermine one of many sources of data, gene content similarities among plastid genomes used to argue for a monophyletic origin of primary plastids, the overall evidence still clearly favors monophyly. Nonetheless, this issue should not be considered settled and new data should be sought from better sampling of cyanobacteria and glaucophytes, from sequenced nuclear genomes, and from careful analysis of such key features as the plastid import apparatus. With respect to the number of secondary plastid symbioses, it is completely unclear as to whether the secondary plastids of euglenophytes and chlorarachniophytes arose by the same or two different algal endosymbioses. Recent analyses of certain plastid and nuclear genes support the chromalveolate hypothesis of Cavalier-Smith, namely, that the plastids of heterokonts, haptophytes, cryptophytes, dinoflagellates, and apicomplexans all arose from a common endosymbiosis involving a red alga. However, another recent paper presents intriguing conflicting data on this score for one of these groups—apicomplexans—arguing instead that they acquired their plastids from green algae.  相似文献   

3.
The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome—one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte‐derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid‐type glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte‐derived tertiary plastids: “gapC1h” acquired from the haptophyte endosymbiont and “gapC1p” inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid‐type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT‐derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.  相似文献   

4.
ABSTRACT. The establishment of a new plastid organelle by secondary endosymbiosis represents a series of events of massive complexity, and yet we know it has taken place multiple times because both green and red algae have been taken up by other eukaryotic lineages. Exactly how many times these events have succeeded, however, has been a matter of debate that significantly impacts how we view plastid evolution, protein targeting, and eukaryotic relationships. On the green side it is now largely accepted that two independent events led to plastids of euglenids and chlorarachniophytes. How many times red algae have been taken up is less clear, because there are many more lineages with red alga‐derived plastids (cryptomonads, haptophytes, heterokonts, dinoflagellates and apicomplexa) and the relationships between these lineages are less clear. Ten years ago, Cavalier‐Smith proposed that these plastids were all derived from a single endosymbiosis, an idea that was dubbed the chromalveolate hypothesis. No one observation has yet supported the chromalveolate hypothesis as a whole, but molecular data from plastid‐encoded and plastid‐targeted proteins have provided strong support for several components of the overall hypothesis, and evidence for cryptic plastids and new photosynthetic lineages (e.g. Chromera) have transformed our view of plastid distribution within the group. Collectively, these data are most easily reconciled with a single origin of the chromalveolate plastids, although the phylogeny of chromalveolate host lineages (and potentially Rhizaria) remain to be reconciled with this plastid data.  相似文献   

5.
It is generally accepted that peridinin-containing dinoflagellate plastids are derived from red alga, but whether they are secondary plastids equivalent to plastids of stramenopiles, haptophytes, or cryptophytes, or are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved. As secondary plastids, plastid gene phylogeny should mirror that of nuclear genes, while incongruence in the two phylogenies should be anticipated if their origin was as tertiary plastids. We have analyzed the phylogeny of plastid-encoded genes from Lingulodinium as well as that of nuclear-encoded dinoflagellate homologues of plastid-encoded genes conserved in all other plastid genome sequences. Our analyses place the dinoflagellate, stramenopile, haptophyte, and cryptophyte plastids firmly in the red algal lineage, and in particular, the close relationship between stramenopile plastid genes and their dinoflagellate nuclear-encoded homologues is consistent with the hypothesis that red algal-type plastids have arisen only once in evolution.  相似文献   

6.
Chloroplast development during sporogenesis in Mnium cuspidatum, M. medium, M. rostratum, Aulacomnium heterostichum, Bartramia pomiformis, and Timmia megapolitana is as follows: During the early mitotic divisions in the sporogenous area of the capsule the number of plastids is reduced from many to one cup-shaped plastid per sporogenous cell. This single plastid divides during the early spore-mother-cell stage. A second division of plastids produces four plastids within each spore-mother-cell. A massive accumulation of starch occurs within each of the four plastids. Following meiosis, the single plastid allocated to each spore produces distinct lobes that are “blebbed” off as proplastids. A photosynthetic membrane system is established within the many proplastids as each spore matures.  相似文献   

7.
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ~110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.  相似文献   

8.
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment, PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids with this genome ultimately being lost (e.g., as in heterokonts, haptophytes, euglenophytes) when photosynthesis comes under full control of the “host” nucleus. For this to happen, all genes for plastid function must be transferred from the nucleomorph to the nucleus. In this regard, it is generally assumed that nucleomorph genes with functions unrelated to plastid or PC maintenance are lost. Surprisingly, we show here the existence of a novel type of actin gene in the host nucleus of the cryptophyte, Pyrenomonas helgolandii, that has originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage that are unrelated to plastid function. These genes are akin to the products of gene duplication and provide a source of evolutionary novelty that could significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

9.
Based on the recent hypothesis on the origin of eukaryotic phototrophs, red algae, green plants, and glaucophytes constitute the primary photosynthetic eukaryotes (whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis), whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events (involving a phototrophic eukaryote and a host cell). Although phylogenetic analyses using multiple plastid genes from a wide range of eukaryotic lineages have been carried out, some of the major phylogenetic relationships of plastids remain ambiguous or conflict between different phylogenetic methods used for nucleotide or amino acid substitutions. Therefore, an alternative methodology to infer the plastid phylogeny is needed. Here, we carried out a cladistic analysis of the loss of plastid genes after primary endosymbiosis using complete plastid genome sequences from a wide range of eukaryotic phototrophs. Since it is extremely unlikely that plastid genes are regained during plastid evolution, we used the irreversible Camin-Sokal model for our cladistic analysis of the loss of plastid genes. The cladistic analysis of the 274 plastid protein-coding genes resolved the 20 operational taxonomic units representing a wide range of eukaryotic lineages (including three secondary plastid-containing groups) into two large monophyletic groups with high bootstrap values: one corresponded to the red lineage and the other consisted of a large clade composed of the green lineage (green plants and Euglena) and the basal glaucophyte plastid. Although the sister relationship between the green lineage and the Glaucophyta was not resolved in recent phylogenetic studies using amino acid substitutions from multiple plastid genes, it is consistent with the rbcL gene phylogeny and with a recent phylogenetic study using multiple nuclear genes. In addition, our analysis robustly resolved the conflicting/ambiguous phylogenetic positions of secondary plastids in previous phylogenetic studies: the Euglena plastid was sister to the chlorophycean (Chlamydomonas) lineage, and the secondary plastids from the diatom (Odontiella) and cryptophyte (Guillardia) were monophyletic within the red lineage.  相似文献   

10.
Cyanophyte-like prokaryotes are widely presumed to be the progenitors of eukaryote plastids. A few rare protistan species bearing cyanophyte-like cyanelles may represent intermediate stages in the evolution of true organelles. Cyanophyte DNA disposition in the cell, so far as is known from electron microscopy, seems uniform within the group and distinctly different from the several known arrangements of DNA in plastids. Therefore a survey of representative cyanophytes and protistan cyanelles was undertaken to determine whether forms reminiscent of plastids could be found. DNA-specific fluorochromes were utilized, along with epifluorescent microscopy, to study the DNA arrangement in situ in whole cells. Only the endospore (baeocyte)-forming Cyanophyta contained more than one, centrally located DNA skein per cell, and then only for the period just preceding visible baeocyte formation. Such forms might, with modification, presage the “scattered nucleoid” DNA disposition found in plastids of several groups, including Rhodophytes, Cryptophytes, Chlorophytes and higher plants. The DNA arrangement in cyanelles of two protists, Cyanophora and Glaucocystis, appear different from each other and possibly related to, respectively, the cyanophytes Gloeobacter and Synechococcus. Cyanelles of the third protist, Glaucosphaera, like the cells of the unique prokaryote Prochloron, appear to have multiple sites of DNA, somewhat similar to those of the “scattered nucleoid” line of plastid evolution. No obvious precursor of the “ring nucleoid” or other types of plastid DNA conformation was found.  相似文献   

11.
Summary Part of the plastid rRNA cistron is present in the mitochondrial genome of Oenothera. This sequence of 2081 nucleotides contains the 3 half of the plastid 23 S rRNA, the adjacent intergenic region and the 4.5 S rRNA. Secondary intramitochondrial sequence rearrangements involve this region of plastid origin and the gene encoding the putative mitochondrial small ribosomal protein S13. Sequence comparison suggests that the interorganellar transfer event occurred a long time ago. The mitochondrial sequence contains regions more homologous to the plastid DNA from tobacco than from Oenothera itself in the regions analysed, suggesting faster sequence evolution in plastids than in mitochondria of Oenothera.  相似文献   

12.
The plastid nucleoid consists of plastid DNA and various, mostly uncharacterized, DNA-binding proteins. The plastid DNA undoubtedly originated from an ancestral cyanobacterial genome, but the origin of the nucleoid proteins appears complex. Initial biochemical analysis of these proteins, as well as comparative genome informatics, suggest that proteins of eukaryotic origin replaced most of the original prokaryotic proteins during the evolution of plastids in the lineage of green plants.  相似文献   

13.
Bacterial transposable elements (IS elements, transposons) represent an important determinant of genome structure and dynamics, and are a major force driving genome evolution. Here, we have tested whether bacterial insertion sequences (IS elements) can transpose in a prokaryotic compartment of the plant cell, the plastid (chloroplast). Using plastid transformation, we have integrated different versions of the Escherichia coli IS element IS 150 into the plastid genome of tobacco ( Nicotiana tabacum ) plants. We show that IS 150 is faithfully mobilized inside the chloroplast, and that enormous quantities of transposition intermediates accumulate. As synthesis of the IS 150 transposase is dependent upon programmed ribosomal frame shifting, our data indicate that this process also occurs in chloroplasts. Interestingly, all insertion events detected affect a single site in the plastid genome, suggesting that the integration of IS 150 is highly sequence dependent. In contrast, the initiation of the transposition process was found to be independent of the sequence context. Finally, our data also demonstrate that plastids lack the capacity to repair double-strand breaks in their genomes by non-homologous end joining, a finding that has important implications for genome stability, and which may explain the peculiar immunity of the plastid to invading promiscuous DNA sequences of nuclear and mitochondrial origin.  相似文献   

14.
Review     
Most photosynthetic dinoflagellates harbour the peridinin plastid. This plastid is surrounded by three membranes and its characteristic pigments are chlorophyll c and the carotenoid peridinin. The evolutionary origin of this peculiar plastid remains controversial and is hotly debated. On the recently published tree of concatenated plastid-encoded proteins, dinoflagellates emerge from within the Chromista (clade containing cryptophytes, heterokonts, and haptophytes) and cluster specifically with Heterokonta. These data inspired a new version of the ‘chromalveolate’ model, according to which the peridinin plastid evolved by ‘descent with modification’ from a heterokont-like plastid that had been acquired from a rhodophyte by an ancestral chromalveolate. However, this model of plastid evolution encounters serious obstacles. Firstly, the heterokont plastid is surrounded by four membranes, which means that the ancestral peridinin plastid must have lost one of these primary membranes. However, such a loss could be traumatic, because it could potentially disturb protein import into and/or within the plastid. Secondly, on the phylogenetic tree of Dinoflagellata and Heterokonta, the first to diverge are not plastid, but heterotrophic, aplastidal taxa. Thus, when accepting the single origin of the heterokont and peridinin plastids, we would have to postulate multiple plastid losses, but such a scenario is highly doubtful when the numerous non-photosynthetic functions of plastids and their existence in heterotrophic protists, including parasitic lineages, are considered. Taking these obstacles into account, we suggest an alternative interpretation of the concatenated tree of plastid-encoded proteins. According to our hypothesis, the peridinin plastid evolved from a heterokont alga through tertiary endosymbiosis.  相似文献   

15.
The evolution of plastids has a complex and still unresolved history. These organelles originated from a cyanobacterium via primary endosymbiosis, resulting in three eukaryotic lineages: glaucophytes, red algae, and green plants. The red and green algal plastids then spread via eukaryote–eukaryote endosymbioses, known as secondary and tertiary symbioses, to numerous heterotrophic protist lineages. The number of these horizontal plastid transfers, especially in the case of red alga‐derived plastids, remains controversial. Some authors argue that the number of plastid origins should be minimal due to perceived difficulties in the transformation of a eukaryotic algal endosymbiont into a multimembrane plastid, but increasingly the available data contradict this argument. I suggest that obstacles in solving this dilemma result from the acceptance of a single evolutionary scenario for the endosymbiont‐to‐plastid transformation formulated by Cavalier‐Smith & Lee (1985). Herein I discuss data that challenge this evolutionary scenario. Moreover, I propose a new model for the origin of multimembrane plastids belonging to the red lineage and apply it to the dinoflagellate peridinin plastid. The new model has several general and practical implications, such as the requirement for a new definition of cell organelles and in the construction of chimeric organisms.  相似文献   

16.
Plastids (the photosynthetic organelles of plants and algae) ultimately originated through an endosymbiosis between a cyanobacterium and a eukaryote. Subsequently, plastids spread to other eukaryotes by secondary endosymbioses that took place between a eukaryotic alga and a second eukaryote. Recently, evidence has mounted in favour of a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their non-photosynthetic relatives, collectively termed chromalveolates). As of yet, however, no single molecular marker has been described which supports a common origin for all of these plastids. One piece of the evidence for a single origin of chromalveolate plastids came from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrial-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts, and found the haptophyte homologues to branch within the strongly supported clade of chromalveolate plastid-targeted GAPDH genes. Interestingly, plastid-targeted GAPDH genes from the haptophytes were more closely related to apicomplexan genes than was expected. Overall, the evolution of plastid-targeted GAPDH reinforces other data for a red algal ancestry of apicomplexan plastids, and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in non-photosynthetic lineages such as ciliates.  相似文献   

17.
The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347–366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.  相似文献   

18.
In recent years a consensus has emerged from molecular phylogenetic investigations favoring a common endosymbiotic ancestor for all chloroplasts. It is within this conceptual framework that most comparative analyses of eukaryotic biochemistry and genetics now are interpreted. One of the first and most influential sources of data leading to this consensus is the remarkable similarity in genome content among all major plastid lineages. Here we report statistical analyses of two sequence data sets, genes encoding ribosomal proteins and transfer RNAs, from representatives of the three primary plastid lineages and a mitochondrion. The latter almost certainly originated in an independent endosymbiotic association and serves as a control for similarity due to convergent evolution. When genes related to organelle‐specific function are factored out, plastid genomes appear to be no more similar to each other than they are to the mitochondrion. Total similarities in gene content, measured as deviations from the expectation from a process of random gene loss, are correlated with the extent of reduction in the two genomes compared. They do not appear to reflect putative evolutionary relationships among plastids. These analyses indicate that similarities in plastid genome content are better explained by convergent evolution due to constraint on gene loss than by a shared evolutionary history. A review of other data cited as support for a single plastid origin suggests that the alternative hypothesis of multiple origins is at least equally consistent in most cases.  相似文献   

19.
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.  相似文献   

20.
The ultrastructure of plastids in cortex and phloem parenchyma cells of Epifagus virginiana (L.) Bart. is described. Based upon morphology and content, several distinct plastid types appear to exist. “Tubular” complexes, lipid globules and electron dense inclusions in different arrangements appear to account for the degree of plastid variability. When results obtained with Epifagus are compared with those obtained by others for a closely related genus, a striking parallel is shown to exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号