首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Plastid-bearing cryptophytes like Cryptomonas contain four genomes in a cell, the nucleus, the nucleomorph, the plastid genome and the mitochondrial genome. Comparative phylogenetic analyses encompassing DNA sequences from three different genomes were performed on nineteen photosynthetic and four colorless Cryptomonas strains. Twenty-three rbc L genes and fourteen nuclear SSU rDNA sequences were newly sequenced to examine the impact of photosynthesis loss on codon usage in the rbc L genes, and to compare the rbc L gene phylogeny in terms of tree topology and evolutionary rates with phylogenies inferred from nuclear ribosomal DNA (concatenated SSU rDNA, ITS2 and partial LSU rDNA), and nucleomorph SSU rDNA.  相似文献   

2.
Two new species of Gracilariopsis from the Indian Ocean are proposed—Gracilariopsis (Gp.) mclachlanii Buriyo, Bellorin et M. C. Oliveira sp. nov. from Tanzania and Gracilariopsis persica Bellorin, Sohrabipour et E. C. Oliveira sp. nov. from Iran—based on morphology and DNA sequence data (rbcL gene and SSU rDNA). Both species fit the typical features of Gracilariopsis: axes cylindrical throughout, freely and loosely ramified up to four orders, with an abrupt transition in cell size from medulla to cortex, cystocarps lacking tubular nutritive cells and superficial spermatangia. Nucleotide sequence comparisons of rbcL and SSU rDNA placed both species into the Gracilariopsis clade as distinct species from all the accepted species for this genus, forming a deeply divergent lineage together with some species from the Pacific. The new species are very difficult to distinguish on morphological grounds from other species of Gracilariopsis, stressing the importance of homologous molecular marker comparisons for the species recognition in this character‐poor genus.  相似文献   

3.
This study evaluated the phylogenetic relationship among samples of “Chantransia” stage of the Batrachospermales and Thoreales from several regions of the world based on sequences of two genes—the plastid‐encoded RUBISCO LSU gene (rbcL) and the nuclear SSU ribosomal DNA gene (SSU rDNA). All sequences of “Chantransia macrospora” were shown to belong to Batrachospermum macrosporum based on both molecular markers, confirming evidence from previous studies. In contrast, nine species are now associated with “Chantransia pygmaea,” including seven species of the Batrachospermales and two of the Thoreales. Therefore, the presence of “C. macrospora” in a stream can be considered reliable evidence that it belongs to B. macrosporum, whereas the occurrence of “C. pygmaea” does not allow the recognition of any particular species, since it is associated with at least nine species. Affinities of “Chantransia” stages to particular taxa were congruent for 70.5% of the samples comparing the rbcL and SSU analyses, which were associated with the same or closely related species for both markers. Sequence divergences have been reported in the “Chantransia” stage in comparison to the respective gametophyte, and this matter deserves further attention.  相似文献   

4.
A new marine microalga from the Mediterranean Sea, Crustomastix stigmatica Zingone, is investigated by means of LM, SEM, TEM, and pigment and molecular analyses (nuclear‐encoded small subunit [SSU] rDNA and plastid‐encoded rbcL). Pigment and molecular information is also provided for the related species Dolichomastix tenuilepis Throndsen et Zingone. Crustomastix stigmatica has a bean‐shaped cell body 3–5 μm long and 1.5–2.8 μm wide, with two flagella four to five times the body length. The single chloroplast is pale yellow‐green, cup‐shaped, and lacks a pyrenoid. A small bright yellow stigma is located in the mid‐dorsal part of the cell under the chloroplast membrane. An additional accumulation of osmiophilic globules is at times seen in a chloroplast lobe. Cells lack flat scales, whereas three different types of hair‐like scales are present on the flagella. The main pigments of C. stigmatica are those typical of Mamiellales, though siphonein/siphonaxanthin replaces prasinoxanthin and uriolide is absent. The pigment pool of D. tenuilepis is more similar to that of Micromonas pusilla (Butcher) Manton et Parke and of other Mamiellales. The nuclear SSU rDNA phylogeny shows that the inclusion of C. stigmatica and D. tenuilepis in the Mamiellales retains monophyly for the order. The two species form a distinct clade, which is sister to a clade including all the other Mamiellales. Results of rbcL analyses failed to provide phylogenetic information at both the order and species level. No unique morphological or pigment characteristics circumscribe the mamiellalean clade as a whole nor its two daughter clades.  相似文献   

5.
Phylogenetic relationships of the Ceramium sinicola complex (C. interruptum and C. sinicola) including C. codicola were studied using nucleotide sequences of rbcL and small subunit rDNA, and the RUBISCO spacer was used for sequence comparison of each species. A reassessment of the taxonomic rank and the evolutionary trend within the complex was inferred from a comparative morphological study and molecular data sets based on 11 samples from eight populations from the Pacific coast of the United States and Mexico. Intraspecific relationships were poorly resolved, but the resurrection of C. interruptum as a distinct species was strongly supported by both morphological and molecular data. Ceramium interruptum is distinguished by the combination of the following features: thalli uncorticated at the first internode above the dichotomy, presence of four corticating filaments, 7–11 segments between branching points, rhizoids digitate, and epiphytic on a variety of hosts. Our molecular analyses show that C. sinicola is the sister group to C. codicola, and C. interruptum is basal to them. These phylogenetic relationships allowed for an assessment of the trend in the evolution of cortication pattern and attachment mode to the host.  相似文献   

6.
Taxonomy in silica‐scaled chrysophytes has gone through three morphological phases. From primary studies of the cell morphology in the 18th century, the focus was in the 20th century replaced by studies of the silica structures of the cell envelope. Now, in the latest decades the importance of DNA sequencing has been recognized, not only to support the taxonomic framework but also to obtain new understanding of taxonomic relations among particular taxa. In the first part of this review, we provide a historical overview of the developments in the taxonomy of scale‐bearing chrysophytes. In the second part, we present a phylogenetic reconstruction of chrysophyte algae, updated by newly obtained SSU rDNA and rbcL sequences of several isolated Synura, Mallomonas and Chrysosphaerella species. We detected significant incongruence between the phylogenies obtained from the different datasets, with the SSU rDNA phylogram being the most congruent with the morphological data. Significant saturation of the first rbcL codon position could indicate the presence of positive selection in the rbcL dataset. Within the Synurales, the relationships revealed by the phylogenetic analyses highlight the artificial infragenetic classification of Mallomonas and Synura, and the occurrence of cryptic diversity within a number of traditionally defined species. Finally, three new combinations are proposed based on the phylogenetic analyses: Tessellaria lapponica, Synura asmundiae and S. bjoerkii.  相似文献   

7.
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast (rbcL) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbcL sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft‐used genes. We have sequenced the coxIII gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The coxIII gene is more variable than rbcL or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

8.
9.
Morphological investigations identified 11 Ceramium Roth species, of the 18 previously reported from Brazil. Phylogenetic analyses of sequences of the chloroplast‐encoded rbcL gene confirmed the presence of seven of these species. Three other species are reported from Brazil for the first time. Ceramium affine Setchell & Gardner and C. filicula Harvey ex Womersley were previously known only from the Pacific Ocean (Mexico and Australia, respectively). A new species, C. fujianum Barros‐Barreto et Maggs sp. nov., is described here. Its general habit is similar to that of C. strictum sensu Harvey from Europe but it has one less periaxial cell than C. strictum; its cortical filament arrangement is closest to C. deslongchampsii Chauvin ex Duby, also from Europe, but whorled tetrasporangia partially covered by cortical cells differ strikingly from the naked protruding tetrasporangia of C. deslongchampsii. Ceramium species in which each periaxial cell cuts off transversely only a single basipetal cell formed a robust clade. The genus Ceramium as represented in Brazil is not monophyletic with respect to Centroceras Kützing and Corallophila Weber‐van Bosse; Ceramium nitens, which has axial cells completely covered by rounded cortical cells formed by acropetal and basipetal filaments, did not group with any Ceramium clade but was weakly allied to a species of Corallophila. All three Brazilian Centroceras sequences were attributed to a single species, C. clavulatum.  相似文献   

10.
Primer sequences are described for amplifying and sequencing a large fragment (approximately 2500 b.p.) of the nuclear-encoded large-subunit ribosomal RNA gene (LSU) from red algae. In comparison to RuBisCo large-subunit gene (rbcL) and nuclear-encoded small-subunit ribosomal RNA gene (SSU) sequence data, LSU sequence data was intermediate in the number of phylogenetically informative positions and sequence divergence. Parsimony analysis of LSU sequences for 16 Gelidiales species resolved some nodes unresolved in rbcL and SSU parsimony trees. An analysis of LSU sequences from 13 species of red algae classified in 11 orders suggests that this gene may be useful in studies of higher-level relationships of red algae.  相似文献   

11.
Twenty-five specimens of the freshwater red alga Compsopogon were collected from locations in North America, South America, Europe, Asia, Australasia and Oceania, and from an aquarium, with the goal of determining genetic diversity among specimens and ascertaining the number of phylogenetic species. Specimens were morphologically identified as having either the ‘caeruleus’ morphology, with regular polyhedral cortical cells, or the ‘leptoclados’ morphology, with irregular cortical cells with rhizoidal outgrowths. The ‘leptoclados’ morphology has been used by some researchers to distinguish the genus Compsopogonopsis from Compsopogon, or at least to distinguish C. leptoclados from other Compsopogon species. Sequence data for the rbcL gene and cox1 barcoding region were obtained for most specimens. In addition, SSU and partial LSU (barcode) rDNA were explored for a few specimens, but all sequences were identical. For the 25 newly generated and eight previously published rbcL gene data, there were seven unique haplotypes, but the sequence divergence was very low (≤7 bp, ≤ 0.7%). One haplotype was widespread, represented by 21 specimens from diverse locations in all regions sampled. Likewise, the 22 new and one previously published cox1 barcode region sequences yielded seven unique haplotypes with little sequence divergence (≤13 bp, ≤ 2.0%). One haplotype was widespread, being shared among 16 specimens from all regions. The combined molecular and morphological data showed no genetic differentiation between the ‘caeruleus’ and ‘leptoclados’ morphologies. The ubiquitous distribution of Compsopogon in tropical/subtropical regions and its low genetic variation are probably facilitated by the alga's ability to tolerate a wide range of stream conditions and its propagation via asexual spores. Given the findings of previous culture-based studies, morphometric research and field observations, coupled with the results of our study, we conclude there is only a single monospecific genus worldwide and that the species is correctly called C. caeruleus, since this is the oldest validly published name; all other previously described species of Compsopogon and Compsopogonopsis are synonyms.  相似文献   

12.
13.
Four unarmored heterotrophic dinoflagellates were isolated from the coastal waters of southern Korea. The rDNA sequences of four clonal cultures were determined, and the morphology of one of the four strains was examined using light and scanning and transmission electron microscopy. The large subunit (LSU) and small subunit (SSU) rDNA sequences of each of the strains differed by 0–0.9% from those of the other strains, and the SSU rDNA sequence of the strain differed by 1.8–4.4% from those of other Gyrodinium species, whereas the LSU (D1–D2) rDNA sequence differed by 12.4–22.2%. Furthermore, phylogenetic trees showed that Gyrodinium jinhaense n. sp. formed a distinctive clade among the other Gyrodinium species. Meanwhile, microscopy revealed an elliptical bisected apical structure complex and a cingulum that was displaced by approximately one‐quarter of the cell length, which confirmed that the dinoflagellate belonged to the genus Gyrodinium. However, the cell surface was ornamented with 16 longitudinal striations, both on the episome and hyposome, unlike other Gyrodinium species. Furthermore, the cells were observed to have pusule systems and trichocysts but lacked mucocysts. Based on morphology and molecular data, we consider this strain to be a new species in the genus Gyrodinium and thus, propose that it be assigned to the name Gjinhaense n. sp.  相似文献   

14.
15.
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kützing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.  相似文献   

16.
The Small Subunit Ribosomal RNA gene (SSU rDNA) is a widely used tool to reconstruct phylogenetic relationships among foraminiferal species. Recently, the highly variable regions of this gene have been proposed as DNA barcodes to identify foraminiferal species. However, the resolution of these barcodes has not been well established, yet. In this study, we evaluate four SSU rDNA hypervariable regions (37/f, 41/f, 43/e, and 45/e) as DNA barcodes to distinguish among species of the genus Bolivina, with particular emphasis on Bolivina quadrata for which ten new sequences ( KY468817 – KY468826 ) were obtained during this study. Our analyses show that a single SSU rDNA hypervariable sequence is insufficient to resolve all Bolivina species and that some regions (37/f and 41/f) are more useful than others (43/e and 45/e) to distinguish among closely related species. In addition, polymorphism analyses reveal a high degree of variability. In the context of barcoding studies, these results emphasize the need to assess the range of intraspecific variability of DNA barcodes prior to their application to identify foraminiferal species in environmental samples; our results also highlight the possibility that a longer SSU rDNA region might be required to distinguish among species belonging to the same taxonomic group (i.e. genus).  相似文献   

17.
18.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

19.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

20.
The dinoflagellate order Peridiniales encompasses several well circumscribed families. However, the family level of some genera, such as Bysmatrum and Vulcanodinium, has remained elusive for many years. Four Peridinium-like strains were established from the Atlantic coast of France and North Sulawesi, Indonesia through cyst germination or isolation of single cells. The cyst-theca relationship was established on specimens from the French Atlantic. Their morphologies were examined using light, scanning and transmission electron microscopy. The cells were characterized by a much larger epitheca relative to the hypotheca, a large anterior sulcal (Sa) plate deeply intruding the epitheca and a small first anterior intercalary plate. The plate formula was identified as Po, cp, X, 4′, 3a, 7′′, 6C, 5S, 5′′′, 2′′′′, shared by Apocalathium, Chimonodinium, Fusiperidinium and Scrippsiella of the family Thoracosphaeraceae but the configuration of Sa plate and anterior intercalary plates is different. Transmission electron microscopy showed that the eyespot was located within a chloroplast comprising two rows of lipid globules and thus belongs to type A. All four strains were classified within a new genus Caladoa as C. arcachonensis gen. et sp. nov. Small subunit ribosomal DNA (SSU rDNA), partial large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer ribosomal DNA (ITS rDNA) sequences were obtained from all strains. Genetic distance based on ITS rDNA sequences between French and Indonesian strains reached 0.17, suggesting cryptic speciation in C. arcachonensis. The maximum likelihood and Bayesian inference analysis based on concatenated data from SSU and LSU rDNA sequences revealed that Caladoa is monophyletic and closest to Bysmatrum. Our results supported that Caladoa and Bysmatrum are members of the order Peridiniales but their family level remains to be determined. Our results also support that Vulcanodinium is closest to the family Peridiniaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号