首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoplast regeneration from extruded cytoplasm of the multicellular marine green alga Microdictyon umbilicatum (Velley) Zanardini (Cladophorales, Anadyomenaceae) was investigated. The early process of protoplast formation is comprised of two steps: agglutination of cell organelles into protoplasmic masses followed by generation of a temporary enclosing envelope around them. Agglutination of cell organelles was mediated by a lectin–carbohydrate complementary system. Three sugars, D‐galactosamine, D‐glucosamine, and α‐D‐mannose, inhibited the agglutination process, and three complementary lectins for the above sugars, peanut agglutinin, Ricinus communis agglutinin, and concanavalin A, bound to the surfaces of chloroplasts. Agglutination assay using human erythrocytes showed the presence of lectins specific for the above sugars in the algal vacuolar sap. A fluorescent probe 1‐(4‐trimethylammoniumphenyl)‐6‐phenyl‐a, 3,5‐hexatriene revealed that the envelope initially surrounding protoplasts was not a lipid‐based cell membrane. However, this developed several hours later. Simultaneous fluorescein diacetate and propidium iodide staining showed that the primary envelope had some characteristics of cell membranes, such as semipermeability and selective transport of materials. Also, fluorescein diacetate staining showed esterase activity in the protoplast and relocation of cell organelles and compartmentalization of cytoplasm during the process of regeneration. Both pH 7–9 and salinity 400–500 mM were found to be essentially important for the development of the protoplast envelope. When the basic regeneration process was accomplished, two alternative pathways of development were seen; about 70% of one‐celled protoplasts transformed into reproductive cells within 2 weeks after wounding, whereas others began cell division and grew into typical Microdictyon thalli. Quadriflagellate swarmers were liberated from the reproductive cells, and they germinated into mature individuals. It is therefore suggested that this species may use the wound response as a method of propagation and dispersal.  相似文献   

2.
Kraemer  G.P.  Pereira  R.  Snellgrove  D.  Carmona  R.  Neefus  C.  Chopin  T.  & Yarish  C. 《Journal of phycology》2003,39(S1):30-30
Protoplast regeneration from extruded cytoplasm of the multi-cellular marine green alga Microdictyon umbilicatum (Velley) Zanardini (Cladophorales, Anadyomenaceae) was investigated. The early process of protoplast formation is comprised of two steps: agglutination of cell organelles into protoplasmic masses followed by generation of a temporary enclosing envelope around them. Agglutination of cell organelles was mediated by a lectin-carbohydrate complementary system. Three sugars, D-galactosamine, D-glucosamine, and a-D-mannose, inhibited the agglutination process, and three complementary lectins for the above sugars, peanut agglutinin, Ricinus communis agglutinin and concanavalin A, bound to the surfaces of chloroplasts. Agglutination assay using human erythrocytes showed the presence of lectins specific for the above sugars in the algal vacuolar sap. The lectin has been purified by the use of D-mannose agarose affinity column. Its Molecular weight was shown to be 36,000 dalton by SDS-PAGE gel electrophoresis. When the basic regeneration process was accomplished, the cells chose one of two developmental strategies; about 70% of one-celled protoplasts transformed into reproductive cells within two weeks after wounding, while others began cell division and grew into typical Microdictyon plants. Quadriflagellate swarmers were liberated from the reproductive cells, and they germinated into mature plants  相似文献   

3.
When the coenocytic green alga Bryopsis plumosa (Huds.) Ag. was cut open and the cell contents were expelled, the cell organelles agglutinated rapidly in seawater to form protoplasts. Aggregation of cell organelles in seawater was mediated by a lectin–carbohydrate complementary system. Two sugars, N‐acetyl‐d ‐glucosamine and N‐acetyl‐d ‐galactosamine inhibited aggregation of cell organelles. The presence of these sugars on the surface of chloroplasts was verified with their complementary fluorescein isothiacyanate‐labeled lectins. An agglutination assay using human erythrocytes showed the presence of lectins specific for N‐acetyl‐d ‐galactosamine and N‐acetyl‐d ‐glucosamine in the crude extract. One‐step column purification using N‐acetyl‐d ‐glucosamine‐agarose affinity chromatography yielded a homogeneous protein. The protein agglutinated the cell organelles of B. plumosa, and its agglutinating activity was inhibited by the above sugars. Sodium dodecyl sulfate polyacrylamide gel electrophoresis results showed that this protein might be composed of two identical subunits cross‐linked by two disulfide bridges. Enzyme and chemical deglycosylation experiments showed that this protein is deficient in glycosylation. The molecular weight was determined as 53.8 kDa by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The N‐terminal 15 amino acid sequence of the lectin was Ser–Asp–Leu–Pro–Thr–X–Asp–Phe–Phe–His–Ile–Pro–Glu–Arg–Tyr, and showed no sequence homology to those of other reported proteins. These results suggest that this lectin belongs to a new class of lectins. We named this novel lectin from B. plumosa“bryohealin.”  相似文献   

4.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

5.
The olfactory epithelium and the vomeronasal organ of the Japanese striped snake were examined by lectin histochemistry. Of the 21 lectins used in the study, all lectins except succinylated‐wheat germ agglutinin (s‐WGA) showed similar binding patterns in the vomeronasal receptor cells and the olfactory receptor cells with varying intensities. The binding patterns of s‐WGA varied among individuals in the vomeronasal and olfactory receptor cells, respectively. Four lectins, Bandeiraea simplicifolia lectin‐II (BSL‐II), Dolichos biflorus agglutinin (DBA), Sophora japonica agglutinin (SJA), and Erythrina cristagalli lectin (ECL) stained secretory granules and the organelles in the olfactory supporting cells and did not stain them in the vomeronasal supporting cells. These results suggest that the glycoconjugate moieties are similar in the vomeronasal and olfactory receptor cells of the Japanese striped snake. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
In red algae, fertilization begins with gamete‐gamete contact between the trichogyne cell wall of the female carpogonium and spermatial coverings. During the fertilization in Aglaothamnion oosumiense, reproductive cells interact with each other through sex specific adhesion molecules on the surface of spermatia and trichogyne. The gamete binding is highly selective suggesting the presence of recognition factors along their surfaces. In the previous studies, we have reported that spermatial binding to trichogynes of a red alga, Aglaothamnion oosumiense is mediated by a lectin‐carbohydrate complementary system. Spermatial binding to trichogynes was inhibited by pre‐incubation of trichogynes with N‐acetyl‐D‐galactosamine and D‐glucose and hence lectins specific to these sugars were expected to present on the surfaces of trichogyne cell wall. We have isolated a new lectin from Aglaothamnion oosumiense by the use of agarose bound N‐acetyl‐D‐galactosamine affinity chromatography and named it as rhodobindin. Rhodobindin agglutinated human erythrocytes as well as spermatia of Aglaothmanion oosumiense. The agglutinating activity of this lectin was inhibited by N‐acetyl‐D‐galactosamine and N‐acetyl‐D‐glucosamine. SDS‐PAGE results showed that this lectin may be monomeric. The molecular weight was determined as 21,876 dalton by matrix‐assisted laser desorption ionization (MALDI) mass‐spectrometry. N‐terminal amino acid sequence of the lectin was analyzed and revealed to have no identity with those of known proteins. The complementary male glycoprotein was also isolated and purified by the use of SBA‐agarose affinity chromatography. The subtractive cloning was carried out to characterize the recognition molecules.  相似文献   

7.
The complex carbohydrates at the cell surfaces of two TA3, murine mammary carcinoma ascites sublines (the strain-specific, TA3-St subline and the nonstrain-specific, TA3-Ha line) were compared by binding studies with 125I-labelled concanavalin A (con A), Ricinis communis agglutinin (RCA), and eel-serum agglutinin (ESA). The TA3-Ha cell bound equal amounts of con A, 1.5-fold more RCA, and 4-fold more ESA than the TA3-St cell. Binding-inhibition studies by these lectins and two others [wheat-germ agglutinin (WGA) and potato lectin (STA)] suggest complementary binding-sites between con A and both RCA and ESA. Quantitative agglutination studies with the five lectins, and inhibition determinations by both neuraminidase-treated and untreated epiglycanin revealed that TA3-St, but not TA3-Ha, cells were agglutinated by con A, and that epiglycanin inhibited this agglutination, as well as the agglutination of rabbit erythrocytes by con A. The presence of a con A receptor on epiglycanin was also suggested by the binding of epiglycanin to con A-Sepharose, and its specific elution with methyl α-d-manno-pyranoside. TA3-St cells were agglutinated at a 10-15-fold lower concentration of either STA or RCA than TA3-Ha cells, but both cells were agglutinated by the same concentration of WGA and ESA. Inhibition by epiglycanin of agglutination of TA3-St cells by either STA or ESA occurred at a concentration lower than that of TA3-Ha cells, but epiglycanin inhibited RCA agglutination of TA3-Ha cells at a concentration  相似文献   

8.
Agglutination and competition studies suggest that human erythrocyte Band 3 can interact with both mannose/glucose- and galactose-specific lectins. Purified Band 3 reconstituted into lipid vesicles binds concanavalin A, but the nonspecific binding component, measured in the presence of alpha-methylmannoside, is very high. This glycoprotein also carries binding sites for the galactose-specific lectin Ricinus communis agglutinin. Binding was inhibited poorly by lactose, but much more effectively by desialylated fetuin glycopeptides, suggesting that the lectin recognizes a complex oligosaccharide sequence on Band 3. The glycoprotein bears two separate classes of binding sites for R. communis agglutinin. High-affinity binding sites exist which show strong positive cooperativity and correspond in number to the outward-facing Band 3 molecules. A low-affinity binding mode is abolished by 40% ethyleneglycol, suggesting the involvement of hydrophobic lectin-glycoprotein interactions. Studies on binding of R. communis agglutinin to human erythrocytes indicate positively cooperative binding to 7 X 10(5) very-high-affinity sites per cell, and lectin binding is completely inhibitable by lactose. Based on its binding characteristics in vesicles, it seems likely that Band 3 forms the major receptor for this lectin in human erythrocytes. Properties such as positive cooperativity thus appear to be a common feature of the interaction of Band 3 with a variety of lectins of different specificity, both in erythrocytes and lipid bilayers.  相似文献   

9.
Abstract The ability of concanavalin A, soybean agglutinin and lectins from Pisum sativum and Bandeiraea simplicifolia to mediate the agglutination of protoplasts prepared from Nicotiana glauca, Zea mays, and Lactuca sativa was assessed. Pea lectin failed to mediate agglutination; the other lectins agglutinated the three cell types tested. A microtiter assay was used to assess the activity of the lectins. The three active lectins had different activities against each of the protoplast types tested.  相似文献   

10.
Insects depend on lectins for non‐self recognition and clearance of invading pathogens. Naturally occurring lectin showing specificity for galactose was purified from the serum of lepidopteran pest Parasa lepida by affinity chromatography using Sepharose 6B coupled with galactose as a gel matrix. Preliminary studies on crude serum agglutinin revealed that the agglutinin molecule showed varying degrees of specificity to avian and mammalian red blood cells tested. Among them, the highest titer of 128 was recorded against rabbit red blood cell type. The agglutinin molecule in the crude serum was stable up to 60°C and at pH between 6 and 9. Also, the hemagglutinating activity was neither dependent on divalent cations nor sensitive to ethylenediaminetetraacetic acid treatment. Galactose inhibited the hemagglutinating activity at minimum inhibitory concentration of 12.5 mM and hence it was used as a ligand for affinity chromatography. Native polyacrylamide gel electrophoresis analysis revealed a single band and the molecular weight of the lectin was found to be approximately 90 kDa. Bacterial agglutination activity of the purified lectin with two significant toxin bacteria, namely Salmonella typhi and Bacillus thuringiensis, was observed.  相似文献   

11.
ABSTRACT Changes in the cell surface carbohydrates of Trypanosoma cruzi epimastigotes induced by Amphotericin B (AmB) were assessed by chemical methods and by agglutination assay employing a panel of highly purified lectins of various sugar specificities, Escherichia coli K12 with mannose-sensitive fimbriae was also used as an agglutination probe. Amphotericin B caused a decrease in the total carbohydrate content of all glycoconjugate fractions isolated. Exposure to AmB strongly affected the mannose/galactose ratio (1:5) in the CHCI3/methanol/H2O soluble fraction. These sugars in 1.4:1 ratio were the major hexose components of control cells. The decrease in the mannose content (48 to 15%) after AmB treatment agrees with the marked decrease in the T. cruzi cell surface receptors for fimbriated E. coli K12. Also, an increase in the galactose content (74%) as compared with control cells (34%) is in agreement with the peanut agglutinin and Euonymus europaeus lectins agglutination results. Differences in the cell surface carbohydrates induced by AmB could be associated with alterations in the membrane structure and organization.  相似文献   

12.
The physicochemical and binding properties of succinylated wheat germ agglutinin are described in comparison with these of unmodified wheat germ agglutinin. Succinylated wheat germ agglutinin is an acidic protein with a pI of 4.0 +/- 0.2 while the native lectin is basic, pI of 8.5. The solubility of succinylated wheat germ agglutinin is about 100 times higher than that of the unmodified lectin at neutral pH. Both lectins are dimeric at pH down to 5, and the dissociation occurs at pH lower than 4.5. The binding of oligosaccharides of N-acetylglucosamine to both lectins is very similar on the basis of fluorescence and phosphorescence studies. The minimal concentration required to agglutinate rabbit red blood cells is about 2 microgram/ml with both lectins and the concentrations of N-acetylglucosamine and di-N-acetylchitobiose which inhibit agglutination are similar with both lectins. The number of succinylated wheat germ agglutinin molecules bound to the surface of mouse thymocytes was ten times lower than that of the unmodified lectin although the apparent binding constant was only slightly different between the two lectins. The dramatic decrease of the apparent number of cell surface receptors upon succinylation of the lectin is discussed on the basis of the decrease of the isoelectric point and of the acidic properties of the cell surface.  相似文献   

13.
Organelles isolated from leaves of spinach (Spinacia oleracea L.) were prefixed in glutaraldehyde and then incubated with ferritin conjugates of four lectins — Concanavalin A (Con A), Ricinus communis L. agglutinin, MW 120,000 (RCA), soybean agglutinin (SBA), and wheat germ agglutinin (WGA) — in order to probe their cytoplasmic surfaces for saccharide residues. In each case the major leaf organelles, including microbodies, mitochondria and chloroplast derivatives, failed to exhibit labeling when examined with the electron microscope. Tobacco (Nicotiana tabacum L.) leaf protoplasts, incubated simultaneously with and under identical conditions to the spinach organelles, showed specific labeling of their plasma membranes with all four lectin conjugates, thus establishing the efficacy of the procedure for demonstrating the presence of binding sites when they exist. Further attempts to show binding of one of the lectins, Con A, by labeling with fluorescein-Con A and by organelle agglutination, yielded results consistent with the absence of ultrastructural labeling. It is concluded that no saccharide residues recognized by the four lectins are present on the cytoplasmic surfaces of organelles and that those residues reported to be constituents of intracellular membranes, therefore, are most likely exposed on the luminal (extracytoplasmic) surfaces.Abbreviations Con A Concanavalin A - RCA Ricinus communis agglutinin, MW 120,000 - SBA soybean agglutinin - WGA wheat germ agglutinin  相似文献   

14.
When plated at high cell density in a microwell culture system, freshly dissociated embryonic mouse cerebellar cells assemble into reproducible, 3-dimensional patterns. The addition of the dimeric lectin Succinyl Concanavalin A blocks reversibly the formation of the microwell pattern, suggesting that cell surface carbohydrates affect the reassociation behavior of embryonic mouse cerebellar cells. Agglutination studes of dissociated cell populations harvested from different regions of the embryonic brain reveal that different lectins agglutinate cell populations from different embryonic brain regions. Cells from E13 cerebellum are agglutinated with Concanavalin A, wheat germ agglutinin, Ricinus communis agglutinin, mol wt 60,000, Ricinus communis agglutinin, mol wt 120,000, and Lens culinaris, but not by soybean agglutinin or a fucose-binding protein. Cells from the midbrain are agglutinated only with Concanavalin A, Ricinus communis agglutinin, mol wt 60,000 and Ricinus communis agglutinin, mol wt 120,000; those from the cerebral cortex are agglutinated only with Lens culinaris; and those from the medulla are agglutinated only with Ricinus communis agglutinin, mol wt 60,000, and Ricinus communis agglutinin, mol wt 120,000. In addition, agglutination of cerebellar cells with Concanavalin A, wheat germ agglutinin, and Ricinus communis agglutinin is diminished over the course of development from embryonic day 13 to postnatal day 7. These studies suggest regional differences in the cell surfaces of the developling brain that are further modulated during the differentiation of the tissues. On a poly(D-lysine) treated substrate in microwell cultures, cell migration is unique to the cerebellum of the 4 brain regions studied. Surfaces treated with carbohydrate-derivatized poly(D-lysine) are currently being tested for their efficacy as substrates for differential cell migration.  相似文献   

15.
Changes in the cell surface carbohydrates of Trypanosoma cruzi epimastigotes induced by Amphotericin B (AmB) were assessed by chemical methods and by agglutination assay employing a panel of highly purified lectins of various sugar specificities. Escherichia coli K12 with mannose-sensitive fimbriae was also used as an agglutination probe. Amphotericin B caused a decrease in the total carbohydrate content of all glycoconjugate fractions isolated. Exposure to AmB strongly affected the mannose/galactose ratio (1:5) in the CHCl3/methanol/H2O soluble fraction. These sugars in 1.4:1 ratio were the major hexose components of control cells. The decrease in the mannose content (48 to 15%) after AmB treatment agrees with the marked decrease in the T. cruzi cell surface receptors for fimbriated E. coli K12. Also, an increase in the galactose content (74%) as compared with control cells (34%) is in agreement with the peanut agglutinin and Euonymus europaeus lectins agglutination results. Differences in the cell surface carbohydrates induced by AmB could be associated with alterations in the membrane structure and organization.  相似文献   

16.
In this project, the uptake mechanisms and localization of two lectins from Sambucus nigra, further referred to as S. nigra agglutinin (SNA)‐I and SNA‐II, into insect midgut CF‐203 cells were studied. SNA‐I is a chimeric lectin belonging to the class of ribosome‐inactivating proteins, whereas SNA‐II is a hololectin devoid of enzymatic activity. Internalization of the fluorescein isothiocyanate‐labeled lectin was investigated using confocal microscopy. Both lectins were internalized into the cytoplasm of CF‐203 cells at similar rates. Preexposure of the insect midgut cells to specific inhibitors of clathrin‐ and caveolae‐mediated endocytosis resulted in an inhibition of lectin uptake in CF‐203 cells and caspase‐induced cytotoxicity caused by SNA‐I and SNA‐II, confirming the involvement of both endocytosis pathways. Further studies demonstrated that the uptake mechanism(s) for both lectins required phosphoinositide 3‐kinases, but did not depend on the actin cytoskeleton. Since the hololectin SNA‐II apparently uses a similar endocytosis pathway as the chimerolectin SNA‐I, it can be concluded that the endocytosis process mainly relies on the carbohydrate‐binding activity of the lectins under investigation. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Binding and uptake studies of in vitro aged or senescent rat erythrocytes by isolated rat liver macrophages suggest recognition by galactose-specific receptors on the cell surface of the macrophages. We analyzed carbohydrates exposed on old erythrocytes by plant lectins in an agglutination assay in comparison with freshly isolated untreated erythrocytes. Rat erythrocytes aged in vitro by storage are agglutinated by a panel of lectins that do not react with freshly isolated erythrocytes. Specificity of agglutination was shown by inhibition with monosaccharides. Antibodies eluted from senescent rat erythrocytes agglutinate in vitro aged as well as senescent rat erythrocytes, but not freshly isolated cells nor human erythrocytes. Galactose-specific lectins isolated from rat liver give similar results; they also agglutinate normal human erythrocytes. Agglutination by the liver lectin is inhibitable by galactose and N-acetylgalactosamine but not by N-acetylglucosamine or mannose. Furthermore, rat liver macrophages devoid of galactose-specific receptors show markedly reduced binding of senescent rat erythrocytes. We conclude that recognition of old rat erythrocytes is mediated by two systems: old erythrocytes expose different terminal sugar residues or a different arrangement of glycans when compared to young erythrocytes, rendering them recognizable by liver lectins and by autoantibodies.  相似文献   

18.
We have examined the agglutination of Sindbis virus and of chick and hamster cells infected with Sindbis virus by two of the plant lectins, concanavalin A and Ricinus communis agglutinin. Both lectins agglutinate the virus by binding to the polysaccharide chains of the envelope glycoproteins. Both chick and hamster cells exhibit increased agglutination by the lectins after infection by Sindbis virus. In the case of chick cells infected with Sindbis virus, this increase in agglutinability occurs between 3 and 5 h after infection. Infected and mock-infected cells bind the same amount of (3)H-labeled concanavalin A, which suggests that the increase in agglutination after infection is due to rearrangements at the cell surface rather than to insertion of new lectin binding sites per se.  相似文献   

19.
Washed cells of Dunaliella tertiolecta Butcher became immobile and agglutinated upon exposure to 100–400 μ/mL lectins in NaCl solution. The agglutinations were strongest with Limulus polyphemus agglutinin and wheat-germ agglutinin, moderate with soybean agglutinin and weakest with Concanavalin A. All lectin-induced agglutinations were inhibited or mitigated by the simultaneous presence of specific lectin-binding sugars. The differential sensitivity of the alga to these lectins suggested that sialic acid and/or N-acetyl-D-glucosamine might be the predominant lectin-receptor sugars in the algal surface coat, with N-acetyl-D-galactosamine likely present as a lesser component. In the absence of lectins, the divalent cations Mg2+, Ca2+ or Mn2+ also caused agglutination, but this process required an alkaline pH of at least ca. 8.6–8.9. Such cation-induced agglutination was reversibly inhibited by the cation complexing agent EDTA as well as by lowering the pH below 8.0. SEM observations of the agglutinations revealed random flagellar attachments as well as direct body contact between agglutinated cells.  相似文献   

20.
The cell surface of Tritrichomonas foetus was characterized by using 18 highly purified lectins with specificities for N-acetyl glucosamine, N-acetyl galactosamine, galactose, mannose, and sialic acid. The specificity of the lectin-induced cell agglutination was verified by inhibition of the agglutination with the specific sugars. By using cytochemical techniques associated with electron microscopy, carbohydrates were detected on the cell surface of T. foetus. The following techniques were used: periodic acid-thiosemicarbazide-silver proteinate, concanavalin A-horseradish peroxidase, and ruthenium red. Anionic sites were detected on the cell surface of the protozoan at pH's 1.8 and 7.2 with the use of colloidal iron hydroxide and cationized ferritin particles, respectively. The binding of colloidal iron particles, as well as the agglutination induced by the lectin from Limulus polyphemus, indicated the presence of sialic acid on the cell surface of T. foetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号