首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微孢子虫核糖体小亚单位RNA(ssurRNA)基因   总被引:5,自引:0,他引:5  
微孢子虫是广泛分布于自然界的细胞内原虫类寄生虫,它们可寄生于整个生物界。微孢子虫是真核生物,但其核糖体及核糖体RNA(rRNA)为原核生物型。为探讨9种家蚕病原性微孢子虫的种地位及亲缘关系,对已广泛用于生物进化分类的核糖体小亚单位RNA(ssurRNA)基因进行了研究。由微孢子虫ssurRNA基因序列同源笥分析所构建的系统进货发育树及Southern杂交分析表明,这9种微孢子虫同为Nosema属,为同属不同种。  相似文献   

2.
The systematic position of the genus Cryothecomonas has been determined from an analysis of the nuclear-encoded small subunit ribosomal RNA gene of Cryothecomonas longipes and two strains of Cryothecomonas aestivalis. Our phylogenetic trees inferred from maximum likelihood, distance and maximum parsimony methods robustly show that the genus Cryothecomonas clusters within the phylum Cercozoa, and is related to the sarcomonad flagellate Heteromita globosa. Morphological data supporting the taxonomic placement of Cryothecomonas near the sarcomonad flagellates has been compiled from the literature. The high number of nucleotide substitutions found between two morphologically indistinguishable strains of Cryothecomonas aestivalis suggests the possibility of cryptic species within Cryothecomonas aestivalis.  相似文献   

3.
L. Vawter  W. M. Brown 《Genetics》1993,134(2):597-608
The small subunit ribosomal RNA gene (srDNA) has been used extensively for phylogenetic analyses. One common assumption in these analyses is that substitution rates are biased toward transitions. We have developed a simple method for estimating relative rates of base change that does not assume rate constancy and takes into account base composition biases in different structures and taxa. We have applied this method to srDNA sequences from taxa with a noncontroversial phylogeny to measure relative rates of evolution in various structural regions of srRNA and relative rates of the different transitions and transversions. We find that: (1) the long single-stranded regions of the RNA molecule evolve slowest, (2) biases in base composition associated with structure and phylogenetic position exist, and (3) the srDNAs studied lack a consistent transition/transversion bias. We have made suggestions based on these findings for refinement of phylogenetic analyses using srDNA data.  相似文献   

4.
The aim of this study was to compare the usefulness of complete small and large subunit rRNA, and a combination of both molecules, for reconstructing stramenopile evolution. To this end, phylogenies from species of which both sequences are known Acre constructed with the neighbor-joining, maximum parsimony, and maximum likelihood methods. Also the use of structural features of the rRNAs was evaluated. The large subunit rRNA from the diatom Skeletonema pseudocostatum was sequenced in order to have a more complete taxon sampling, and a group I intron was identified. Our results indicated that heterokont algae are monophyletic, with diatoms diverging first. However, as the analysis was restricted to a particular data set containing merely six taxa, the outcome has limited value for elucidating stramenopile relationships. On the other hand, this approach permits comparison of the performance of both rRNA molecules without interference from other factors, such as a different species selection for each molecule. For the taxa used, the large subunit rRNA clearly contained more phylogenetic information than the small subunit rRNA. Although this result can definitely not be generalized and depends on the phvlogeny to be studied, in some cases determining complete large subunit rRNA sequences certainly seems worthwhile.  相似文献   

5.
ABSTRACT The diversity of symbiotic dinoflagellates (SD) from seven coral species ( Fungia scutaria, Fungia paumotensis, Lep-tastrea transversa, Pavona cactus, Pocillopora verrucosa, Montastrea curia , and Acropora fonnosa ) was studied in a restricted geographical area, the Lagoon of Arue on the island of Tahiti. Their diversity was explored by small subunit ribosomal RNA gene (SSU rDNA) restriction fragment length polymorphism (RFLP). After a nested amplification with SD specific primers, RFLP analyses were performed directly and after a cloning step. The diversity of these different SSU rDNA was estimated in respect to possible technical artifacts. In an axenic culture of SD from the coral Galaxea fascicularis , both heterogeneous SSU rDNAs and artifact molecules were observed as in our SD samples. According to the number of patterns observed, corals Fungia paumotensis, Leptastrea transversa. Pavona cactus, Montastrea curia, and Acropora fonnosa contained one class of SD SSU rDNAs. whereas Fungia scutaria and Pocillopora verrucosa contained three and two classes of SD SSU rDNAs respectively. In the limited geographic area studied. SD from different coral species shared the same pattern, except SD from Montastrea curta , which showed a unique pattern. In addition to the possibility of SD flux among different coral species, specific mechanisms could also be involved in the establishment of a symbiosis.  相似文献   

6.
Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.  相似文献   

7.
Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.  相似文献   

8.
Using the polymerase chain reaction (PCR) and two primers for conserved regions of the small subunit ribosomal RNA (SSU-rRNA.) of Microsporidia, a DNA segment about 1,195 base pairs long was amplified from a DNA template prepared from purified spores of the microsporidian species Pleistophora anguillarum. These spores had been isolated from adult eels ( Anguilla japonica ) with "Beko Disease." A comparison of sequence data from other microsporidian species showed P. anguillarum SSU-rRNA to be most similar to Vavraia oncoperae. When juvenile eels were artificially infected with P. anguillarum , enzyme-linked immunosorbent assay could detect a positive infection only 12 days post-infection. However, when suitable PCR primers were used, a DNA fragment of about 0.8 kb was detected from these juvenile eels after only 3 days post-infection. No PCR product was obtained with templates prepared from clinically healthy control animals.  相似文献   

9.
The Rhizopoda comprise a diverse assemblage of protists which depend on lobose or filose pseudopodia for locomotion. The biochemical and morphological diversity of rhizopods has led to an uncertain taxonomy. Ribosomal RNA sequence comparisons offer a measure of evolutionary relatedness that is independent of morphology and has been used to demonstrate a polyphyletic origin of the Lobosea. We sequenced complete small subunit ribosomal RNA coding regions from the filose amoebae, Euglypha rotunda and Paulinella chromatophora (Euglyphina) to position these taxa in the eukaryote phylogeny. The neighbor-joining analyses show that E. rotunda and P. chromatophora share a monophyletic origin and are not closely related to any lobose amoebae in our analyses. Instead, the Euglyphina form a robust sister group to the Chlorarachniophyta. These results provide further evidence for the polyphyly of the Rhizopoda and support the creation of a new amoeboid lineage which includes the Euglyphina and the chlorarachniophyte algae; taxa with tubular mitochondrial cristae and filose or reticulate pseudopodia.  相似文献   

10.
Ribosome formation in Saccharomyces cerevisiae requires a large number of transiently associated assembly factors that coordinate processing and folding of pre-rRNA and binding of ribosomal proteins. Krr1 and Faf1 are two interacting proteins present in early 90 S precursor particles of the small ribosomal subunit. Here, we determined a co-crystal structure of the core domain of Krr1 bound to a 19-residue fragment of Faf1 at 2.8 Å resolution. The structure reveals that Krr1 consists of two packed K homology (KH) domains, KH1 and KH2, and resembles archaeal Dim2-like proteins. We show that KH1 is a divergent KH domain that lacks the RNA-binding GXXG motif and is involved in binding another assembly factor, Kri1. KH2 contains a canonical RNA-binding surface and additionally associates with an α-helix of Faf1. Specific disruption of the Krr1-Faf1 interaction impaired early 18 S rRNA processing at sites A0, A1, and A2 and caused cell lethality, but it did not prevent incorporation of the two proteins into pre-ribosomes. The Krr1-Faf1 interaction likely maintains a critical conformation of 90 S pre-ribosomes required for pre-rRNA processing. Our results illustrate the versatility of KH domains in protein interaction and provide insight into the role of Krr1-Faf1 interaction in ribosome biogenesis.  相似文献   

11.
The complete sequences and secondary structures of the mitochondrial small subunit (SSU) ribosomal RNAs of both mostly cultivated mushrooms Agaricus bisporus (1930 nt) and Lentinula edodes (2164 nt) were achieved. These secondary structures and that of Schizophyllum commune (1872 nt) were compared to that previously established for Agrocybe aegerita. The four structures are near the model established for Archae, Bacteria, plastids, and mitochondria; particularly the helices 23 and 37, described as specific to bacteria, are present. Within the four Agaricales (Homobasidiomycota), the SSU-rRNA core is conserved in size (966 to 1009 nt) with the exception of an unusual extension of 40 nt in the H17 helix of S. commune. The four core sequences possess 76% of conserved positions and a cluster of C in their 3 end, which could constitute a signal involved in the RNA maturation process. Among the nine putative variable domains, three (V3, V5, V7) do not show significant length variations and possess similar percentages of conserved positions (69%) than the core. The other six variable domains show important length variations, due to independent large size inserted/deleted sequences, and higher rates of nucleotide substitutions than the core (only 31% of conserved positions between the four species). Interestingly, the inserted/deleted sequences are located in few preferential sites (hot spots for insertion/deletion) where they seem to arise or disappear haphazardly during evolution. These sites are located on the surface of the tertiary structure of the 30S ribosomal subunit, at the beginning of hairpin loops; the insertions lead to a lengthening of existing hairpins or to branching loops bearing up to five additional helices.  相似文献   

12.
ABSTRACT. Three complete 18S ribosomal RNA gene sequences from the rumen ciliates, Entodinium coudatum (1,639 bp), Epidinium caudarum (1,638 bp), and Polyplastron multivesiculatum (1,640 bp) were determined and confrimed in the opposite direction. Trees produced using maximum parsimony and distance-matrix methods (lest squares and neighbour-joining). with strong bootstrap support, depict the rumen ciliates as a monophyletic group, Entodinium caudatum is the earliest branching rumen ciliate. However, Entodiniwn simplex does not pair with En. caudatum , but rather with Polyplastron multivesiculatum. Signature sequences for these rumen ciliates reveal that the published SSrRNA gene sequence from En. simplex is in fact a Polyoplastron species. The free-living haptorian ciliates, Loxophyllum, Homalozoon and Spathidium (Subclass Hoptoria), are monophyletic and are the sister group to the rumen cilates. The litostomes (class Litostomatea), consisting of the haptorians and the rumen ciliates, are also a monophyletic group.  相似文献   

13.
A 2550-bp portion of the mitochondrial genome of a Demosponge, genus Tetilla, was amplified from whole genomic DNA extract and sequenced. The sequence was found to code for the 3′ end of the 16S rRNA gene, cytochrome c oxidase subunit II, a lysine tRNA, ATPase subunit 8, and a 5′ portion of ATPase subunit 6. The Porifera cluster distinctly within the eumetazoan radiation, as a sister group to the Cnidaria. Also, the mitochondrial genetic code of this sponge is likely identical to that found in the Cnidaria. Both the full COII DNA and protein sequences and a portion of the 16S rRNA gene were found to possess a striking similarity to published Cnidarian mtDNA sequences, allying the Porifera more closely to the Cnidaria than to any other metazoan phylum. The gene arrangement, COII—tRNALys—ATP8—ATP6, is observed in many Eumetazoan phyla and is apparently ancestral in the metazoa. Received: 24 November 1997 / Accepted: 14 September 1998  相似文献   

14.
15.
ABSTRACT. The alternating myxosporean and actinosporean stages of the myxozoan parasitc Myxobolus cerebralis (Hofer 1903) from its salmonid fish and aquatic oligochaete hosts, respectively, were compared for sequence homology of the small subunit (18S) ribosomal RNA genes. A 99.8% similarity between the sequences of these two stages was substantially greater than that of M. cerebralis compared to two other Myxobolus sp. from salmonid fish. Our results are the first molecular evidence confirming the alternating stages initially described by Wolf and Markiw [25] for the life cycle of M. cerebralis but found in two different taxonomic classes (Myxosporea and Actinosporea) are indeed forms of the same organism. Sequencing of rRNA genes of the actinosporean stage followed by development of specific primers for DNA amplification of the myxosporean stage, as in our study, should be applied to solve other myxozoan life cycles. Additionally, these approaches will in the future provide useful diagnostic reagents for the detection and study of this important group of fish pathogens.  相似文献   

16.
ABSTRACT. The small subunit ribosomal RNA genes of nine species belonging to six genera of litostome ciliates, namely Amphileptus aeschtae, Chaenea teres, Chaenea vorax, Lacrymaria marina, Litonotus paracygnus, Loxophyllum sp.‐GD‐070419, Loxophyllum jini, Loxophyllum rostratum, and Phialina salinarum, were sequenced for the first time. Phylogenetic trees were constructed using different methods to assess the inter‐ and intra‐generic relationships of haptorians, of which Chaenea, Lacrymaria, Litonotus, and Phialina were analyzed for the first time based on molecular data. Monophyly of the order Pleurostomatida was strongly confirmed, and the two existing families of pleurostomatids, created on the basis of morphology, were confirmed by molecular evidence. Within the Pleurostomatida, Siroloxophyllum utriculariae occupied a well‐supported position basal to the Loxophyllum clade, supporting the separation of these genera from one another. Both the subclass Haptoria and the order Haptorida were partially unresolved, possibly paraphyletic assemblages of taxa in all analyses, creating doubts about the traditional placement of some haptorid taxa. The existing sequence of L. rostratum in GenBank (DQ411864) was conspicuously different from that of the isolate from Qingdao, China sequenced in the present work, indicating that they are different species. The isolate from Qingdao was verified as L. rostratum by morphological analysis, and the published morphology of existing GenBank record of L. rostratum is different from it. Based on both morphological and molecular evidence, the latter may be congeneric with an undescribed species of Loxophyllum from Guangdong Province, China.  相似文献   

17.
18.
The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.  相似文献   

19.
Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.  相似文献   

20.
During sequence analysis of the first intron of the human c-fms oncogene, we identified an open reading frame encoding the ribosomal protein L7 (RPL7). The presence of this sequence within intron 1 of the c-fms gene was confirmed by Southern blot hybridization and by sequence analysis of two independent cosmid clones (cos2-e and cos1-22) that span the human genomic c-fms locus. The RPL7 sequence was detected in a region of sequence overlapped by the cos2-e and cos1-22 cosmid clones but oriented opposite to the c-fms gene. We demonstrated that the sequence is identical to the full-length RPL7 cDNA sequence, but lacks any recognizable introns, has a 30-bp poly(A) tail, and is bracketed by two perfect direct repeats of 14 bp. We also showed that despite the fact that the 5′ flanking region of the RPL7 sequence contains a potential TATA box upstream of an intact open reading frame, this pseudogene (RPL7P) is not actively transcribed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号