首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the combined impacts of future CO2 and temperature increases on the growth and physiology of marine picocyanobacteria. We incubated Synechococcus and Prochlorococcus under present‐day (380 ppm) or predicted year‐2100 CO2 levels (750 ppm), and under normal versus elevated temperatures (+4°C) in semicontinuous cultures. Increased temperature stimulated the cell division rates of Synechococcus but not Prochlorococcus. Doubled CO2 combined with elevated temperature increased maximum chl a–normalized photosynthetic rates of Synechococcus four times relative to controls. Temperature also altered other photosynthetic parameters (α, Φmax, Ek, and ) in Synechococcus, but these changes were not observed for Prochlorococcus. Both increased CO2 and temperature raised the phycobilin and chl a content of Synechococcus, while only elevated temperature increased divinyl chl a in Prochlorococcus. Cellular carbon (C) and nitrogen (N) quotas, but not phosphorus (P) quotas, increased with elevated CO2 in Synechococcus, leading to ~20% higher C:P and N:P ratios. In contrast, Prochlorococcus elemental composition remained unaffected by CO2, but cell volume and elemental quotas doubled with increasing temperature while maintaining constant stoichiometry. Synechococcus showed a much greater response to CO2 and temperature increases for most parameters measured, compared with Prochlorococcus. Our results suggest that global change could influence the dominance of Synechococcus and Prochlorococcus ecotypes, with likely effects on oligotrophic food‐web structure. However, individual picocyanobacteria strains may respond quite differently to future CO2 and temperature increases, and caution is needed when generalizing their responses to global change in the ocean.  相似文献   

2.
The relationships between growth rate, cell‐cycle parameters, and cell size were examined in two unicellular cyanobacteria representative of open‐ocean environments: Prochlorococcus (strain MIT9312) and Synechococcus (strain WH8103). Chromosome replication time, C, was constrained to a fairly narrow range of values (~4–6 h) in both species and did not appear to vary with growth rate. In contrast, the pre‐ and post‐DNA replication periods, B and D, respectively, decreased with increasing growth rate from maxima of ~30 and 10–20 h to minima of ~4–6 and 2–3 h, respectively. The combined duration of the chromosome replication and postreplication periods (C+D), a quantity often used in the estimation of Prochlorococcus in situ growth rates, varied ~2.4‐fold over the range of growth rates examined. This finding suggests that assumptions of invariant C+D may adversely influence Prochlorococcus growth rate estimates. In both strains, cell mass was the greatest in slowly growing cells and decreased 2‐ to 3‐fold over the range of growth rates examined here. Estimated cell mass at the start of replication appeared to decrease with increasing growth rate, indicating that the initiation of chromosome replication in Prochlorococcus and Synechococcus is not a simple function of cell biomass, as suggested previously. Taken together, our results reflect a notable degree of similarity between oceanic Synechococcus and Prochlorococcus strains with respect to their growth‐rate‐specific cell‐cycle characteristics.  相似文献   

3.
Circadian periodicity in cell division and death was investigated in the cyanobacterium Anabaena flos-aquae (Lyngb.) Bréb in a phosphorus (P)-limited, N2-fixing chemostat culture. When entrained under 12:12 h LD cycles, not only cell division but also cell death showed a clear circadian rhythm in this filamentous cyanobacterium. The rhythm persisted under continuous light and was temperature compensated. Circadian rhythm was clearly observed in the steady-state cell number and instantaneous growth rate, μ(t), which reached a maximum at about 2 h before sunset and a minimum at about 2 h before sunrise. The number of dead cells and the instantaneous death rate γ(t) also showed a circadian periodicity; the peak of γ(t) occurred approximately 8 h before that of μ(t). Therefore, cell growth and death in A. flos-aquae appear to be under the control of circadian clocks, and thus it seems that their death is programmed cell death.  相似文献   

4.
FISH技术在微生物生态学中的研究及进展   总被引:3,自引:0,他引:3  
分子生物学技术在微生物生态学研究中具有灵敏、精确和快速的优势,但不能提供微生物的形态学、数量性状、空间分布等信息。荧光原位杂交技术结合了分子生物学的精确性和显微镜的可视性信息,可以在自然生境中监测和鉴定不同的微生物个体,尤其是对难培养和未被培养的微生物进行检测。荧光原位杂交技术被广泛用于微生物群落结构诊断和评价,现已成为微生物分子生态学研究中的热点技术。对荧光原位杂交技术的发展和在微生物分子生态学中的应用进行了综述,探讨了该技术应用中存在的问题和发展前景。  相似文献   

5.
The preference of phytoplankton for ammonium over nitrate has traditionally been explained by the greater metabolic cost of reducing oxidized forms of nitrogen. This “metabolic cost hypothesis” implies that there should be a growth disadvantage on nitrate compared to ammonium or other forms of reduced nitrogen such as urea, especially when light limits growth, but in a variety of phytoplankton taxa, this predicted difference has not been observed. Our experiments with three strains of marine Synechococcus (WH7803, WH7805, and WH8112) did not reveal consistently faster growth (cell division) on ammonium or urea as compared to nitrate. Urease and glutamine synthetase (GS) activities varied with nitrogen source in a manner consistent with regulation by cellular nitrogen status via NtcA (rather than by external availability of nitrogen) in all three strains and indicated that each strain experienced some degree of nitrogen insufficiency during growth on nitrate. At light intensities that strongly limited growth, the composition (carbon, nitrogen, and pigment quotas) of WH7805 cells using nitrate was indistinguishable from that of cells using ammonium, but at saturating light intensities, cellular carbon, nitrogen, and pigment quotas were significantly lower in cells using nitrate than ammonium. These and similar results from other phytoplankton taxa suggest that a limitation in some step of nitrate uptake or assimilation, rather than the extra cost of reducing nitrate per se, may be the cause of differences in growth and physiology between cells using nitrate and ammonium.  相似文献   

6.
An approximately 1400‐bp region of the 16S rRNA gene was sequenced for 10 polar or near‐polar strains putatively placed in the Oscillatorialean genera Oscillatoria, Phormidium, and Lyngbya obtained from the University of Toronto Culture Collection to assess phylogenetic relationships. The strains were also examined for thylakoid structure and cell division type with TEM as well as traditional morphology with LM. Phylogenetic trees constructed using parsimony, distance, and maximum likelihood methods were similar in topology. If the original epithets applied to the sequenced strains (both polar and those from GenBank) were used, it was clear that taxa were not monophyletic. However, using the revised taxonomic system of Anagnostidis and Komárek, we were able to reassign these strains to their current correct taxa (species, genus, and family). When these assignments were made, it was determined that the molecular sequence data analyses were congruent with morphology and ultrastructure. Nine of the polar strains were found to be new species, and eight were described as such: Arthronema gygaxiana Casamatta et Johansen sp. nov., Pseudanabaena tremula Johansen et Casamatta sp. nov., Leptolyngbya angustata Casamatta et Johansen sp. nov., Phormidium lumbricale Johansen et Casamatta sp. nov., Microcoleus glaciei Johansen et Casamatta sp. nov., Microcoleus rushforthii Johansen et Casamatta sp. nov., Microcoleus antarcticus Casamatta et Johansen sp. nov., Microcoleus acremannii Casamatta et Johansen sp. nov. Some genera (Leptolyngbya and Microcoleus) were clearly not monophyletic and require future revision.  相似文献   

7.
Synechococcus species are important primary producers in coastal and open‐ocean ecosystems. When nitrate was provided as the sole nitrogen source, nickel starvation inhibited the growth of strains WH8102 and WH7803, while it had little effect on two euryhaline strains, WH5701 and PCC 7002. Nickel was required for the acclimation of Synechococcus WH7803 to low iron and high light. In WH8102 and WH7803, nickel starvation decreased the linear electron transport activity, slowed down QA reoxidation, but increased the connectivity factor between individual photosynthetic units. Under such conditions, the reduction of their intersystem electron transport chains was expected to increase, and their cyclic electron transport around PSI would be favored. Nickel starvation decreased the total superoxide dismutase (SOD) activity of WH8102 and WH7803 by 30% and 15% of the control, respectively. The protein‐bound 63Ni of the oceanic strain WH8102 comigrated with SOD activity on nondenaturing gels and thus provided additional evidence for the existence of active NiSOD in Synechococcus WH8102. In WH7803, it seems likely that nickel starvation affected other metabolic pathways and thus indirectly affected the total SOD activity.  相似文献   

8.
The toxic marine dinoflagellates Alexandrium tamarense (Lebor) Balech and A. catenella (Whedon and Kofoid) Taylor have been mainly responsible for paralytic shellfish poisoning in Japan. Rapid and precise identification of these algae has been difficult because this genus contains many morphologically similar toxic and nontoxic species. Here, we report a rapid, precise, and quantitative identification method using three fluorescent, rRNA‐targeted, oligonucleotide probes for A. tamarense (Atm1), A. catenella (Act1), and the nontoxic A. affine (Inoue et Fukuyo; Aaf1). Each probe was species specific when applied using fluorescence in situ hybridization (FISH). None of the probes reacted with three other Alexandrium spp., A. lusitanicum Balech, A. ostenfeldii (Paulsen) Balech & Tangen, and A. insuetum Balech, or with eight other microalgae, including Gymnodinium mikimotoi Miyake et Kominami ex Oda and Heterosigma akashiwo (Hada) Hara et Chihara, suggesting that the species specificity of each probe was very high. Cells labeled with fluorescein 5‐isothiocyanate–conjugated probes showed strong green fluorescence throughout the whole cell except for the nucleus. FISH could be completed within 1 h and largely eliminated the need for identifying species based on key morphological criteria. More than 80% of targeted cells of both species could be identified by microscopy and quantified during growth up to the early stationary phase; more than 70% of cells could be detected in the late stationary phase. The established FISH protocol was found to be a specific, rapid, precise, and quantitative method that might prove to be a useful tool to distinguish and quantify Alexandrium cells collected from Japanese coastal waters.  相似文献   

9.
To develop tools for modeling diazotrophic growth in the open ocean, we determined the maximum growth rate and carbon content for three diazotrophic cyanobacteria commonly observed at Station ALOHA (A Long‐term Oligotrophic Habitat Assessment) in the subtropical North Pacific: filamentous nonheterocyst‐forming Trichodesmium and unicellular Groups A and B. Growth‐irradiance responses of Trichodesmium erythraeum Ehrenb. strain IMS101 and Crocosphaera watsonii J. Waterbury strain WH8501 were measured in the laboratory. No significant differences were detected between their fitted parameters (±CI) for maximum growth rate (0.51 ± 0.09 vs. 0.49 ± 0.17 d?1), half‐light saturation (73 ± 29 vs. 66 ± 37 μmol quanta · m?2 · s?1), and photoinhibition (0 and 0.00043 ± 0.00087 [μmol quanta · m?2 · s?1]?1). Maximum growth rates and carbon contents of Trichodesmium and Crocosphaera cultures conformed to published allometric relationships, demonstrating that these relationships apply to oceanic diazotrophic microorganisms. This agreement promoted the use of allometric models to approximate unknown parameters of maximum growth rate (0.77 d?1) and carbon content (480 fg C · μm?3) for the uncultivated, unicellular Group A cyanobacteria. The size of Group A was characterized from samples from the North Pacific Ocean using fluorescence‐activated cell sorting and real‐time quantitative PCR techniques. Knowledge of growth and carbon content properties of these organisms facilitates the incorporation of different types of cyanobacteria in modeling efforts aimed at assessing the relative importance of filamentous and unicellular diazotrophs to carbon and nitrogen cycling in the open ocean.  相似文献   

10.
Diel changes in the frequency of dividing cells (FDC) of three Microcystis species were investigated in a small eutrophic pond from July to October 2005. The representative species was M. aeruginosa (Kütz.) Kütz., constituting 57%–86% of the Microcystis population throughout the study period, and the remainder were M. viridis (A. Braun) Lemmerm. and M. wesenbergii (Komárek) Komárek. The FDC of M. aeruginosa and M. wesenbergii increased in the daytime and fell in the nighttime in July and August, but this regular variation was not observed in September or October. The in situ specific growth rates of Microcystis species were estimated based on the assumption that the specific growth rate can be given as an absolute value of the derivative of FDC with respect to time. The calculated values were similar among species—0.15–0.38 · d?1 for M. aeruginosa, 0.14–0.63 · d?1 for M. viridis, and 0.18–0.61 · d?1 for M. wesenbergii. The specific growth rates in July and August slightly exceeded those in September and October. The analysis of the in situ specific growth rate of Microcystis indicated that recruitment of the benthic population or morphological change, rather than massive growth, was at least partly responsible for the dominance of M. aeruginosa in the study pond.  相似文献   

11.
Thirty‐one strains of Microcoleus were isolated from desert soils in the United States. Although all these taxa fit the broad definition of Microcoleus vaginatus (Vaucher) Gomont in common usage by soil algal researchers, sequence data for the 16S rRNA gene and 16S–23S internal transcribed spacer (ITS) region indicated that more than one species was represented. Combined sequence and morphological data revealed the presence of two morphologically similar taxa, M. vaginatus and Microcoleus steenstrupii Boye‐Petersen. The rRNA operons of these taxa were sufficiently dissimilar that we suspect the two taxa belong in separate genera. The M. vaginatus clade was most similar to published sequences from Trichodesmium and Arthrospira. When 16S sequences from the isolates we identified as M. steenstrupii were compared with published sequences, our strains grouped with M. chthonoplastes (Mertens) Zanardini ex Gomont and may have closest relatives among several genera in the Phormidiaceae. Organization within the 16S–23S ITS regions was variable between the two taxa. Microcoleus vaginatus had either two tRNA genes (tRNAIle and tRNAAla) or a fragment of the tRNAIle gene in its ITS regions, whereas M. steenstrupii had rRNA operons with either the tRNAIle gene or no tRNA genes in its ITS regions. Microcoleus vaginatus showed no subspecific variation within the combined morphological and molecular characterizations, with 16S similarities ranging from 97.1% to 99.9%. Microcoleus steenstrupii showed considerable genetic variability, with 16S similarities ranging from 91.5% to 99.4%. In phylogenetic analyses, we found that this variability was not congruent with geography, and we suspect that our M. steenstrupii strains represent several cryptic species.  相似文献   

12.
Occurrences of rare cyanobacteria Anabaena reniformis Lemmerm. and Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek were recently detected at several localities in the Czech Republic. Two monoclonal strains of An. reniformis and one strain of Aph. aphanizomenoides were isolated from distant localities and different sampling years. They were characterized by a combination of morphological, genetic, and biochemical approaches. For the first time, partial 16S rRNA gene sequences were obtained for these morphospecies. Based on this gene, all of these strains clustered separately from other planktonic Anabaena and Aphanizomenon strains. They appeared in a cluster with Cylindrospermopsis Seenaya et Subba Raju and Raphidiopsis F. E. Fritsch et M. F. Rich, clustered closely together with two An. kisseleviana Elenkin strains available from GenBank. A new generic entity was defined (Sphaerospermum gen. nov., with the type species S. reniforme, based on the traditional species An. reniformis). These results contribute significantly to the knowledge base about genetic heterogeneity among planktonic Anabaena–like and Aphanizomenon–like morphospecies. Accordingly, the subgenus Dolichospermum, previously proposed for the group of planktonic Anabaena, should be revaluated. Secondary metabolite profiles of the An. reniformis and Aph. aphanizomenoides strains differed considerably from 17 other planktonic Anabaena strains of eight morphospecies isolated from Czech water bodies. Production of puwainaphycin A was found in both of the An. reniformis strains. Despite the relatively short phylogenetic distance from Cylidrospermopsis, the production of cylindrospermopsin was not detected in any of our strains.  相似文献   

13.
In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA‐FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA‐FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton.  相似文献   

14.
15.
Species currently classified within the cyanobacterial genus Microcoleus were determined to fall into two distinct clades in a 16S rDNA phylogeny, one containing taxa within the Oscillatoriaceae, the other containing taxa within the Phormidiaceae. The two lineages were confirmed in an analysis of the 16S–23S internal transcribed spacer (ITS) region sequences and secondary structures. The type species for Microcoleus is M. vaginatus Gomont, and this taxon belongs in the Oscillatoriaceae. Consequently, Microcoleus taxa in the Phormidiaceae must be placed in separate genera, and we propose the new genus Coleofasciculus to contain marine taxa currently placed in Microcoleus. The type species for Coleofasciculus is the well‐studied and widespread marine mat‐forming species Microcoleus chthonoplastes (Mert.) Zanardini ex Gomont. Other characters separating the two families include type of cell division and thylakoid structure.  相似文献   

16.
Alexandrium taylori Balech is a phototrophic marine dinoflagellate. It produced recurrent blooms during the summer months (July and August) of 1994 to 1997 in La Fosca beach (NW Mediterranean). In addition to a motile vegetative form, A. taylori had two benthic forms: temporary cysts and resting cysts. Temporary cysts were a temporally quiescent stage produced from the ecdysis of the vegetative cell in both natural populations and laboratory cultures. Temporary cysts may divide to form motile cells. Resting cysts had a thicker wall than the temporary cysts and had a red accumulation body. Gametes and planozygotes were also observed in laboratory cultures. Alexandrium taylori showed in situ diurnal vertical migration with an increase of vegetative cells in the water column in the morning through midday, with concentrations peaking in the afternoon followed by lower levels at night. Most vegetative cells lost their thecae and flagella, and with them their motility, turning into temporary cysts that settled in the early evening. The number of temporary cysts in the water column rose in the evening and at night. The temporary cysts gave rise to motile cells the following morning. Synthesis of DNA occurred in vegetative cells at night, and a preferential period of cell division occurred at sunrise. The estimated division rate in the field was 0.4–0.5 vegetative cells·day−1. Temporary cysts had twice the DNA of a G1 vegetative cell. The minimum in situ division rate of the temporary cysts was 0.14 day−1. The role of the resting and temporary cyst population in the annual recurrence and maintenance of the A. taylori bloom is discussed.  相似文献   

17.
This study aimed to compare the ability of two Arthrospira platensis (Nordst.) Gomont strains, M2 and Kenya, isolated from two different habitats, to acclimate to low temperature (15°C). Both strains had similar growth rates at 30°C, but once acclimated to low temperature, M2 showed a greater decline in growth (59% vs. 41% in the Kenya strain). We suggest that the Kenya strain acclimated better to low temperature by down‐regulating its photosynthetic activity through (i) decreasing antenna size and thus reducing energy flux into the photosystems; (ii) decreasing reaction center density (RC/CSX) and the performance index, thus decreasing the trapping probability and electron transport rate while maintaining electron transport probability for electron transport beyond QA? unchanged; (iii) increasing the energy dissipation flux. In contrast, the M2 strain showed no difference in antenna size and exhibited a much lower decrease in RC/CSX and a lower dissipation rate. Hence, the Kenya strain minimized potential damage on the acceptor side of PSII compared to the M2 cells. Furthermore, acclimation to low temperature was accompanied by an improved mechanism for handling excess energy resulting in an enhanced ability of the Kenya strain to rapidly repair damaged PSII RCs and withstand a high photon flux density (HPFD) stress; this finding might be defined as a cross‐adaptation phenomenon. This study may provide a tool to identify strains suitable for outdoor mass‐production in different regions characterized by different climate conditions.  相似文献   

18.
Dunaliella tertiolecta Butcher was grown at two intensities (33, 150μEin · m?2· s?1) of blue light and white light at 0.25, 0.50 and 1.00 M NaCl. Growth rates were used as an indication of the relative osmoregulatory ability of cells in the various treatments. There was no significant effect on growth rate due to various NaCl molarities. No significant difference in growth rate was found between blue- and white-light cultures at the high intensity, the average growth constant being 2.07 divisions/day. However, at the low intensity illumination, blue light produced a significant increase in growth rate; 1.42 vs. 0.93 divisions/day for blue light and white light grown cells respectively. The average glycerol content of exponentially dividing cells grown at 0.25, 0.50 and 1.00 M NaCl was 0.12, 0.41 and 1.12 mg/108 cells, respectively, as measured by gas chromatography. The intracellular glycerol content was significantly reduced by blue light at both light intensities and at each NaCl molarity. However, high light intensity reduced cellular glycerol content more than the reduction effected by blue light. Glycerol accumulated in the medium throughout culture growth. Intracellular glycerol content also increased with cellular aging reaching 2.72 mg/108 cells in stationary phase, low intensity 1.00 M NaCl cultures. A negative correlation between glycerol content and growth rate was found. Total inhibition of glycerol production could not be obtained by treatment with blue light. However, this negative correlation possibly indicates that D. tertiolecta expends energy producing an excess amount of glycerol over that required for osmoregulation, leading to a reduction in the growth rate for the organism.  相似文献   

19.
We performed interspecific hybridization in the haploid blade‐forming marine species (nori) of the genus Porphyra, which have a heteromorphic life cycle with a haploid gametophytic blade and a diploid microscopic sporophyte called the “conchocelis phase.” The green mutant HGT‐6 of P. tenera var. tamatsuensis A. Miura was crossed with the wildtype HG‐1 of P. yezoensis f. narawaensis A. Miura; the F1 heterozygous conchocelis developed normally and released numerous conchospores. However, almost all the conchospore germlings did not survive past the four‐cell stage or thereabouts, and only a few germlings developed into gametophytic blades. These results indicate that hybrid breakdown occurred during the meiosis, while the surviving F1 gametophytic blades were considered a breakthrough in the interspecific hybridization of Porphyra. Organelle genomes (cpDNA and mtDNA) were found to be maternally inherited in the interspecific hybridization by molecular analyses of the organelle DNA. In particular, molecular analyses of nuclear DNA revealed that the surviving F1 blades were allodiploids in the haploid gametophytic phase; however, there is a possibility of the occurrence of rapid chromosomal locus elimination and rearrangement in the F1 conchocelis phase. Our findings are noteworthy to the breeding of cultivated Porphyra and will provide important information for understanding of the speciation of marine plants with high species diversity.  相似文献   

20.
Sensory neuron membrane proteins (SNMPs) are olfactory‐specific, two‐transmembrane proteins. Previous publications reported that SNMP1 is expressed on the dendrite membrane of pheromone‐sensitive neurons in Heliothis virescens and is an essential cofactor for pheromone detection in Drosophila. In this study, we cloned two SNMP genes (GenBank accession nos. JX469106 and JX469107) from the antenna of the beet armyworm moth Spodoptera exigua (Lepidoptera: Hübner). These SNMP genes are classified into two highly conserved subclades, indicating their importance in physiological activity of lepidopteran insects. SexiSNMP1 is antenna‐specific in male and female adults, while SexiSNMP2 is antenna‐abundant but also expressed in other chemosensory tissues, particularly proboscises and maxillary palps of adults both sexes. In situ hybridization revealed that both SNMPs are broadly expressed in long and short trichoid and basiconic sensilla. We infer that SNMP1 and SNMP2 act in the detection of the sex pheromone and general odorants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号