首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

2.
Phytoplankton pigment distributions during the spring isothermal periods of 1998 and 1999 and their association with episodic sediment resuspension were characterized in coastal waters of southern Lake Michigan. Total and phylogenetic group chl a concentrations (derived using chemical taxonomy matrix factorization of diagnostic carotenoids) corresponded with assemblage and group biovolumes estimated from microscopic enumeration (P≤ 0.001). Diatoms and cryptophytes dominated assemblages and together typically comprised greater than 85% of relative chl a. Total chl a concentrations and both fucoxanthin·chl a ? 1 and alloxanthin·chl a ? 1 ratios were similar across depths (P> 0.05), indicating uniform distributions of and photophysiological states for assemblages and diatoms and cryptophytes, respectively, throughout the mixed water column. Total chl a concentrations were not always spatially uniform from near‐shore to offshore waters, with the greatest variability reflecting the influence of tributary inflows upon coastal assemblages. Sediment resuspension strongly influenced water column particle density and light climate; however, total and group chl a concentrations did not correspond with coefficients of Kd and suspended particulate matter concentrations (P> 0.05). The correspondence of both light attenuation and suspended particulate matter concentration with relative diatom chl a (P≤ 0.001) indicated an apparent association between sediment resuspension and diatoms. This, and the negative association (P≤ 0.0001) between relative diatom and cryptophyte chl a, corresponded with the spatial dominance of diatom and cryptophyte chl a in near‐shore and offshore waters, respectively. The presence of viable chl a and fucoxanthin within the surficial sediment layer, established this layer as a potential source of meroplanktonic diatoms for near‐shore assemblages.  相似文献   

3.
Assessments of nutrient‐limitation in microalgae using chl a fluorescence have revealed that nitrogen and phosphorus depletion can be detected as a change in chl a fluorescence signal when nutrient‐starved algae are resupplied with the limiting nutrient. This photokinetic phenomenon is known as a nutrient‐induced fluorescence transient, or NIFT. Cultures of the unicellular marine chlorophyte Dunaliella tertiolecta Butcher were grown under phosphate starvation to investigate the photophysiological mechanism behind the NIFT response. A combination of low temperature (77 K) fluorescence, photosynthetic inhibitors, and nonphotochemical quenching analyses were used to determine that the NIFT response is associated with changes in energy distribution between PSI and PSII and light‐stress‐induced nonphotochemical quenching (NPQ). Previous studies point to state transitions as the likely mechanism behind the NIFT response; however, our results show that state transitions are not solely responsible for this phenomenon. This study shows that an interaction of at least two physiological processes is involved in the rapid quenching of chl a fluorescence observed in P‐starved D. tertiolecta: (1) state transitions to provide the nutrient‐deficient cell with metabolic energy for inorganic phosphate (Pi)‐uptake and (2) energy‐dependent quenching to allow the nutrient‐stressed cell to avoid photodamage from excess light energy during nutrient uptake.  相似文献   

4.
The photosynthetic performance, pigmentation, and growth of a Halimeda community were studied over a depth gradient on Conch Reef, Florida Keys, USA during summer–fall periods of 5 consecutive years. The physiology and growth of H. tuna (Ellis & Solander) Lamouroux and H. opuntia (L.) Lamouroux on this algal dominated reef were highly variable. Maximum rate of net photosynthesis (Pmax), respiration rate, and quantum efficiency (α) did not differ between populations of either species at 7 versus 21 m, even though the 21‐m site received a 66% lower photon flux density (PFD). Physiological parameters, as well as levels of photosynthetic pigments, varied temporally. Pmax, saturation irradiance, compensation irradiance, and growth were greatest in summer months, whereas α, chl a, chl b, and carotenoid concentrations were elevated each fall. Halimeda tuna growth rates were higher at 7 m compared with 21 m for only two of five growth trials. This may have arisen from variability in light and nutrient availability. Individuals growing at 7 m received a 29% greater PFD in August 2001 than in 1999. In August 1999 and 2001 seawater temperatures were uniform over the 14‐m gradient, whereas in August 2000 cold water regularly intruded upon the 21‐m but not the 7‐m site. These results illustrate the potentially dynamic relationship between nutrients, irradiance, and algal productivity. This suggests the necessity of long‐term monitoring over spatial and temporal gradients to accurately characterize factors that impact productivity.  相似文献   

5.
Some ploidy plants demonstrate environmental stress tolerance. Tetraploid (4×) black locust (Robinia pseudoacacia L.) exhibits less chlorosis in response to high CO2 than do the corresponding diploid (2×) plants of this species. We investigated the plant growth, anatomy, photosynthetic ability, chlorophyll (chl) fluorescence, and antioxidase activities in 2× and 4× black locusts cultivated under high CO2 (0.5%). Elevated CO2 (0.5%) induced a global decrease in the contents of total chl, chl a, and chl b in 2× leaves, while few changes were found in the chl content of 4× leaves. Analyses of the chl fluorescence intensity, maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), K‐step (Vk), and J‐step (VJ) revealed that 0.5% CO2 had a negative effect on the photosynthetic capacity and growth of the 2× plants, especially the performance of PSII. In contrast, there was no significant effect of high CO2 on the growth of the 4× plants. These analyses indicate that the decreased inhibition of the growth of 4× plants by high CO2 (0.5%) may be attributed to an improved photosynthetic capacity, pigment content, and ultrastructure of the chloroplast compared to 2× plants.  相似文献   

6.
The influence of seasonally fluctuating photoperiods on the photosynthetic apparatus of Palmaria decipiens (Reinsch) Ricker was studied in a year‐round culture experiment. The optimal quantum yield (Fv/Fm) and the maximal relative electron transport rate (ETRmax), measured by in vivo chl fluorescence and pigment content, were determined monthly. During darkness, an initial increase in pigment content was observed. After 3 months in darkness, ETRmax and Fv/Fm started to decrease considerably. After 4 months in darkness, degradation of the light‐harvesting antennae, the phycobilisomes, began, and 1 month later the light harvesting complex I and/or the reaction centers of PSII and/or PSI degraded. Pigment content and photosynthetic performance were at their minimum at the end of the 6‐month dark period. Within 24 h after re‐illumination, P. decipiens started to accumulate chl a and to photosynthesize. The phycobiliprotein accumulation began after a time lag of about 7 days. Palmaria decipiens reached ETRmax values comparable with the values before darkness 7 days after re‐illumination and maximal values after 30 days of re‐illumination. Over the summer, P. decipiens reduced its photosynthetic performance and pigment content, probably to avoid photodamage caused by excess light energy. The data show that P. decipiens is able to adapt to the short period of favorable light conditions and to the darkness experienced in the field.  相似文献   

7.
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun‐induced fluorescence signal on the ground and on a coarse spatial scale using space‐borne imaging spectrometers. Intermediate‐scale observations using airborne‐based imaging spectroscopy, which are critical to bridge the existing gap between small‐scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun‐induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun‐induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun‐induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun‐induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.  相似文献   

8.
The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse‐amplitude‐modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv/Fm), the effective PSII efficiency (ΦPSII), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of PI parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self‐shading (in relation to algal biomass) could have influenced photosynthesis in older communities.  相似文献   

9.
Limited data are available on the effects of phosphorus (P) and aluminum (Al) interactions on Citrus spp. growth and photosynthesis. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 50, 100, 250 and 500 μM KH2PO4× 0 and 1.2 mM AlCl3· 6H2O. Thereafter, P and Al in roots, stems and leaves, and leaf chlorophyll (Chl), CO2 assimilation, ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and Chl a fluorescence (OJIP) transients were measured. Under Al stress, P increased root Al, but decreased stem and leaf Al. Shoot growth is more sensitive to Al than root growth, CO2 assimilation and OJIP transients. Al decreased CO2 assimilation, Rubisco activity and Chl content, whereas it increased or did not affect intercellular CO2 concentration. Al affected CO2 assimilation more than Rubisco and Chl under 250 and 500 μM P. Al decreased root, stem and leaf P, leaf maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot,abs), but increased leaf minimum fluorescence (Fo), relative variable fluorescence at K‐ and I‐steps. P could alleviate Al‐induced increase or decrease for all these parameters. We conclude that P alleviated Al‐induced inhibition of growth and impairment of the whole photosynthetic electron transport chain from photosystem II (PSII) donor side up to the reduction of end acceptors of photosystem I (PSI), thus preventing photosynthesis inhibition through increasing Al immobilization in roots and P level in roots and shoots. Al‐induced impairment of the whole photosynthetic electron transport chain may be associated with growth inhibition.  相似文献   

10.
In vivo chlorophyll (Chl) a fluorescence was measured in undisturbed intertidal sediments with the purpose of tracing the vertical migratory rhythms of benthic microalgae. A pulse amplitude fluorometer, an instrument which does not require physical contact with the sample, was used, thus allowing successive measurements to be taken on the same sample without causing any type of disturbance to the sediment structure. The basis of the method is the possibility to detect changes in the Chl a concentration near the sediment surface caused by the vertical movement of the microalgae. This requires the verification of two conditions: the possibility to follow changes in the sediment Chl a content from fluorescence intensity, and a sediment photic depth smaller than the vertical distances covered by the moving microalgae. Both conditions were experimentally verified in intertidal muddy sediments of the Tagus estuary, Portugal. In vivo fluorescence was shown to vary linearly with the sediment Chl a content, and the sediment photic depth was estimated to reach 0.27 mm, a value clearly smaller than the reported depths for microalgal migrations. Sediment samples kept under in situ conditions exhibited large hourly Variations (over 400%) in the Chl a fluorescence intensity, which were closely synchronized with the daytime periods of emersion. The rhythmic fluctuations in Chl a fluorescence were confirmed further to represent microalgal migration by (1) its endogenous nature (fluorescence continued to follow diurnal and tidal cycles after removal of environmental stimuli), (2) its dependence on the vertical distribution of the microalgal population within the sediment (vertically homogenized samples failed to display fluorescence variations), and (3) the lack of significant temperature and light effects on the fluorescence emission under in situ conditions (tested in three species representative of the main groups found in the studied microphytobenthic communities—the diatom Phaeodactylum tricornutum (Böhlin), the cyanobacterium Spirulina maxima (Setch. et Gard.), and the euglenophyte Euglena granulata (Klebs) Lemm.). The results obtained indicate that, in spite of the potential concurrent effects of factors other than the Chl a concentration on the fluorescence intensity, in vivo Chl a fluorescence can be used to trace nondestructively the migratory behavior of benthic microalgae.  相似文献   

11.
This study was designed to understand the high variability characterizing primary production rates of microphytobenthos. The photosynthetic efficiency (αB) and photosynthetic capacity (PBmax) of the microphytobenthos were measured at different times of the day on two different dates (8 May and 7 July 1990). In July, unusually low light conditions were caused by the development of a brown tide (chrysophytes). Both light-limited and light-saturated photosynthesis changed at hourly and monthly scales. There was a linear relationship between αB and PBmax, suggesting a common response to environmental factors [αB= 0.0075(±0.00063)·PBmax+ 0.00097(±0.0071), R2= 0.94]. Incident irradiance at the sediment-water interface was the primary physical factor that explained variability of both αB (84%) and PBmax (92%). Temperature had a negative but minor effect that explained an extra 8% and 2% of the variance, respectively. There was no diel rhythm of αB and PBmax and incident irradiance was regulated by wind-induced currents. Therefore, microphytobenthos photosynthesis seemed to be primarily controlled by wind events in Baffin Bay.  相似文献   

12.
The pigment composition of 18 species (51 strains) of the pennate diatom Pseudo‐nitzschia was examined using HPLC. The carotenoid composition was typical for diatoms, with fucoxanthin (the major xanthophyll), diadinoxanthin, diatoxanthin, and β,β‐carotene. However, a diverse array of chl c pigments was observed in the studied strains. All Pseudo‐nitzschia strains contained chl a and chl c2, traces of Mg‐2,4‐divinyl phaeoporphyrin a5 monomethyl ester (MgDVP), and traces of a chl c2–like pigment originally found in the haptophyte Pavlova gyrans. The distribution of chl c1 and chl c3 was variable among species (present in seven and 14 species, respectively). Based on chl c distribution, three major pigment types were defined: type 1 (chl c1 + c2, four species: P. australis, P. brasiliana, P. multiseries, and P. seriata), type 2 (chl c1 + c2 + c3, three species: P. fraudulenta, P. multistriata, and P. pungens), and type 3 (chl c2 + c3, 11 species: P. arenysensis, P. calliantha, P. cuspidata, P. decipiens, P. delicatissima, P. galaxiae, P. mannii, P. pseudodelicatissima, P. subcurvata, P. cf. subpacifica, and a novel Pseudo‐nitzschia species). Type 1 and 2 species also shared the absence of a particular morphological character, the central nodule in the raphe, with the only exception of P. fraudulenta. The implications of such pigment diversity in chemotaxonomy, HAB monitoring, ecology, and phylogeny of Pseudo‐nitzschia species are discussed.  相似文献   

13.
Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose‐phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2] than at ambient [O2]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi > 2 mmol P m?2, rely the most on additional Pi made available from photorespiration rather than species growing in P‐impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.  相似文献   

14.
The bloom‐forming cyanobacterium Microcystis aeruginosa Kütz 854 was cultured with 1.05 W·m?2 UV‐B for 3 h every day, and its growth, pigments, and photosynthesis were investigated. The specific growth rates represented by chl a concentration and OD750 were inhibited 8% and 9% by UV‐B exposure, respectively. Six days of UV‐B treatment significantly reduced cellular contents of phycocyanin and allophycocyanin by 32% and 62%, respectively, and markedly increased the carotenoid content by 27%, but had little effect on the chl a content. The initial values of optimal photosynthetic efficiency for UV‐B treated samples were, respectively, 52%, 87%, and 93% of controls on days 4, 7, and 10 of growth. The light‐saturated photosynthetic rates at day 6 were significantly lower than controls grown without UV‐B. The probability of electron transfer beyond QA decreased during UV‐B exposure, and this indicated that the acceptor side of PSII was one of main damage sites. The adaptation of M. aeruginosa 854 to UV‐B radiation could be observed from light‐saturated photosynthetic rates on day 13 and diurnal changes of chl fluorescence during the late growth phase. When both exposed to higher UV‐B, samples cultured under 1.05 W·m?2 UV‐B for 9 days recovered faster than controls. It is suggested that M. aeruginosa 854 had at least three adaptive strategies to cope with the enhanced UV‐B: increasing the synthesis of carotenoids to counteract reactive oxidants caused by UV‐B exposure, degrading phycocyanin and allophycocyanin to avoid further damage to DNA and reaction centers, and enhancing the repair of UV‐B induced damage to the photosynthetic apparatus.  相似文献   

15.
Seasonal changes in incident irradiance and underwater light penetration at Loch Leven from 1968 to 1971 are discussed in relation to the photosynthetic behaviour and crop density of phytoplankton. Light extinction was highest in the blue and lowest in the orange spectral regions, a pattern typical of other turbid waters. Euphotic depth varied between 1·2 and 7·4 m and was on average c. three times the Secchi disc transparency. Underwater light extinction depended chiefly on phytoplankton crop density (estimated as chlorophyll a). Despite the shallowness and wind-exposed situation of the loch there was no evidence of appreciable light extinction due to sediment disturbance. Possible causes of variability in the relationship between the minimum vertical extinction coefficient (k min) and the concentration of chlorophyll a are discussed. The value of ks, the increment in kmin per unit increment in algal concentration, was estimated from field data as 0·0086 In units per mg chl a/m2 and from laboratory spectroradiometer data as 0·0079 In units per mg chl a/m2. These ks values imply theoretical upper limits for the amount of chlorophyll a in the euphotic zone (Σn max) of 430 and 468 mg chl a/m2, respectively. Observed euphotic chlorophyll a contents (Σn) were sometimes close to these upper limits. Typical photosynthesis/depth profiles are described. Profile area is shown to be related to the logarithm of the ratio between surface-penetrating irradiance (Io') and the irradiance (Ik) defining the onset of light-saturation of photosynthesis. Standardized profiles, plotted on a common scale of ‘optical depth’, are used to illustrate the relatively minor influence of variations in Io' and Ik on hourly rates of photosynthesis per unit area. The saturation parameter (Ik) generally increased as photosynthetic capacity (Pmax) increased; the temperature-dependence of Ik is explained by the temperature-dependence of the enzyme-controlled (dark) reactions of photosynthesis, which control Pmax. A spring peak in the ratio between surface penetrating irradiance (Io') and Ik is interpreted as a result of a lag in the seasonal increase in water temperature with increase in surface irradiance. The gradient (K') of the linear light-limited region of the photosynthesis-irradiance curve showed little variation and had an average value of 0·31 mg O2/mg chl a.h per 1 W/m2 (PAR). Interactions between mixed depth, underwater light extinction and phytoplankton productivity are discussed; comparisons are made with other shallow, optically deep lakes.  相似文献   

16.
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv/Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross‐section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv/Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N‐limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure.  相似文献   

17.
In spring 2005, monthly sampling was carried out at a sublittoral site near Tautra Island. Microphytobenthic identification, abundance (ABU), and biomass (BIOM), were performed by microscopic analyses. Bacillariophyceae accounted for 67% of the total ABU, and phytoflagellates constituted 30%. The diatom floristic list consisted of 38 genera and 94 species. Intact light‐harvesting pigments chl a, chl c, and fucoxanthin and their derivatives were identified and quantified by HPLC. Photoprotective carotenoids were also observed (only as diadinoxanthin; no diatoxanthin was detected). Average fucoxanthin content was 4.57 ± 0.45 μg fucoxanthin · g sediment dry mass?1, while the mean chl a concentration was 2.48 ± 0.15 μg · g?1 dry mass. Both the high fucoxanthin:chl a ratio (considering nondegraded forms) and low amounts of photoprotective carotenoids indicated that the benthic microalgal community was adapted to low light. Microphytobenthic primary production was estimated in situ (MPPs, from 0.15 to 1.28 mg C · m?2 · h?1) and in the laboratory (MPPp, from 6.79 to 34.70 mg C · m?2 · h?1 under light saturation) as 14C assimilation; in April it was additionally estimated from O2‐microelectrode studies (MPPO2) along with the community respiration. MPPO2 and the community respiration equaled 22.9 ± 7.0 and 7.4 ± 1.8 mg C · m?2 · h?1, respectively. A doubling of BIOM from April to June in parallel with a decreasing photosynthetic activity per unit chl a led us to suggest that the microphytobenthic community was sustained by heterotrophic metabolism during this period.  相似文献   

18.
Growth and photosynthesis of an edible cyanobacterium, Ge‐Xian‐Mi (Nostoc), were investigated with differently sized colonies. Both photosynthesis and growth were dependent on the colony size. Compared with larger ones, smaller colonies grew faster regardless of the levels of light and temperature for culture and showed higher values of maximal net photosynthetic rate, apparent quantum yield, light‐saturating and compensating points, and dark respiration. The ratios of chl a content and mass to surface area of a colony increased and that of chl a to mass or mass to volume of a colony decreased with increased colonial sizes. A Ge‐Xian‐Mi colony appeared to increase its chl a content per surface area, enhancing the light‐shading effect; however, at the same time it decreased its mass density on a volume basis, minimizing the enhanced effects of shading and diffusion barrier caused by the thickening outer layer with increasing colony size during growth.  相似文献   

19.
We present a simple model to assess the quantum yield of photochemistry (ΦP) and CO2 assimilation rate from two parameters that are detectable by remote sensing: chlorophyll (chl) fluorescence and the photochemical reflectance index (PRI). ΦP is expressed as a simple function of the chl fluorescence yield (ΦF) and nonphotochemical quenching (NPQ): ΦP = 1–bΦF(1 + NPQ). Because NPQ is known to be related with PRI, ΦP can be remotely assessed from solar‐induced fluorescence and the PRI. The CO2 assimilation rate can be assessed from the estimated ΦP value with either the maximum carboxylation rate (Vcmax), the intercellular CO2 concentration (Ci), or parameters of the stomatal conductance model. The model was applied to experimental data obtained for Chenopodium album leaves under various environmental conditions and was able to successfully predict ΦF values and the CO2 assimilation rate. The present model will improve the accuracy of assessments of gas exchange rates and primary productivity by remote sensing.  相似文献   

20.
The effects of phosphorus (P) limitation on growth, toxicity, and variable chl fluorescence of Alexandrium minutum were examined in batch culture experiments. Cell division was greatly impaired in P‐limited cultures, but P spiking of these cultures after 9 days stimulated high levels of cell division equivalent to P‐replete cultures. The cellular concentration of paralytic shellfish toxins was consistent over the growth cycle of control cultures from lag phase into logarithmic growth phase, with toxins repeatedly lost to daughter cells during division. The low level of cell division in P‐limited cultures resulted in a 10‐fold increase of cellular toxin compared with controls, but this dropped upon P spiking due to increased rates of cell division. The history of phosphorus supply had an important effect on toxin concentration, with the P‐limited and the P‐spiked cultures showing values 2‐fold higher than the P‐replete cultures. Toxin profiles of the A. minutum strain used in these experiments were dominated by the N1‐hydroxy toxins, gonyautoxins (GTX) GTX1 and GTX4, which were approximately 40 times more abundant than their analogues, GTX2 and GTX3, in P‐limited cultures. The dominance of the N1‐hydroxy toxins increased significantly in control cultures as they advanced through logarithmic growth. In‐line measurements of the variable chl fluorescence of light‐adapted cells indicated consistent photochemical efficiency under P‐replete conditions. P limitation induced a drop in fluorescence‐based photochemical efficiency that was reversible by P spiking. There was an inverse linear relationship between in‐line fluorescence and cell toxin quota (r = ?0.88). Monitoring fluorescence in‐line may be valuable in managing efficient biotechnological production of toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号