首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletonema costatum (Grev.) Cleve emend. Zingone et Sarno and S. grevillei Sarno et Zingone were known only from the type material collected from Hong Kong waters more than a century ago. Both species have now been collected as live material, and their morphology and phylogenetic position are investigated in this study. Eight Skeletonema strains isolated from Florida, USA; Uruguay; and Brazil are attributed to S. costatum, while one strain from Oman is ascribed to S. grevillei based on morphological similarity to the type material of these species. In addition, a new Skeletonema species, S. ardens Sarno et Zingone, is described for a strain from Singapore and two from northern Australian waters. Skeletonema ardens has terminal fultoportula processes ending in a tapered, undulate protrusion and long intercalary fultoportulae with 1:1 junctions. The rimoportula of terminal valves is located at the margin of the valve face. No major morphological variations were observed within S. grevillei and S. ardens along a salinity gradient, whereas in S. costatum, the processes shortened and the valves came into close contact at low salinities, as already described for S. subsalsum (Cleve) Bethge. Consistent with their morphology, Skeletonema costatum and Skeletonema subsalsum also had similar rDNA sequences. Skeletonema grevillei and S. ardens were distinct in the large subunit (LSU) phylogeny. Skeletonema ardens exhibited consistent intraspecific genetic differences in both the LSU and small subunit (SSU) rDNA.  相似文献   

2.
With the use of a new kit from Qiagen to amplify total genome quantity, DNA was bulked up from two diatoms that are difficult to grow (Ardissonea and Climacosphenia), and the nuclear SSU rRNA gene was successfully amplified. Results of Bayesian analyses showed that these diatoms are sister to Toxarium and belong to the bi‐ and multipolar centric diatoms. The results indicate that extremely elongate shape has arisen at least twice in diatoms, in the true pennates, and in the bipolar centrics. The two lateral pattern centers of Ardissonea and Climacosphenia likely represent a modified annulus that subtends ribs internally as well as externally. Studies of sexual reproduction are needed to determine whether Ardissonea, Climacosphenia, and Toxarium achieve their elongate shape by similar means to each other and to true pennates, that is, by controlling the expansion of the auxospores by sequential addition of silicified bands (to form a properizonium or perizonium).  相似文献   

3.
The phylogenetic position of diatoms belonging to the genus Attheya is presently under debate. Species belonging to this genus have been placed in the subclasses Chaetocerotophycidae and Biddulphiophycidae, but published phylogenetic trees based on 18S rDNA, morphology, and sexual reproduction indicate that this group of diatoms may be a sister group of the pennates. To clarify the position of Attheya, we studied the morphology, 18S rDNA, 16S rDNA of the chloroplasts, the rbcL large subunit (LSU) sequences of the chloroplasts, and the sterol composition of three different strains of Attheya septentrionalis (Østrup) R. M. Crawford and one strain of Attheya longicornis R. M. Crawford et C. Gardner. These data were compared with data from more than 100 other diatom species, covering the whole phylogenetic tree, with special emphasis on species belonging to the genera that have been suggested to be related to the genus Attheya. All data suggest that the investigated Attheya species form a separate group of diatoms, and there is no indication that they belong to either the Chaetocerotophycidae or the Biddulphiophycidae. Despite applying these various approaches, we were unable to determine the exact phylogenetic position of the investigated Attheya species within the diatoms.  相似文献   

4.
The effects of temperature, ionic composition, and conductivity on growth rates of ten strains of Chaetoceros muelleri Lemmerman (mostly var. subsalsum Johan. & Rushf.) were studied. Lipid content of stressed and unstressed cells and fatty acid composition were also determined. Considerable physiological variability was observed in the ten strains, although principal components analysis of physiological data indicated that all strains fell into one of two major groups: C. muelleri (var. muelleri and var. subsalsum) and an undescribed Chaetoceros species morphologically close to C. muelleri var. subsalsum. A high degree of agreement was found among morphological, physiological, and biochemical data sets, indicating that physiological and biochemical data may be helpful in making taxonomic decisions in diatoms, particularly in taxa with few morphological characters. We also conclude that nonmorphological characters such as those employed in the present study can be used to test phylogenetic hypotheses formulated from traditional morphological data.  相似文献   

5.
6.
In benthic samples from the unchannelized Missouri River, the diatoms Nitzschia dissipata (Kütz.) Grun., N. filiformis (W. Sm.) Schütt and N. pseudofonticola Hust. were observed within the mucilage tubes of four tube-forming diatoms: Cymbella prostrata (Berk.) Cl., C. prostrata var. auerswaldii (Rabh.) Reim., Navicula tripunctata var. schizonemoides (V.H.) Patr., and Nitzschia filiformis. Microscopical observations of live and preserved specimens indicated that “invasion” by Nitzschia occurred primarily in older tubes. Data are presented on the environmental conditions in which the tube-formers and their cohabitants have been found.  相似文献   

7.
Relationships among the apical pore field-bearing diatom genera Brebissonia, Cymbella, Gomphonema, Gomphoneis, Didymosphenia, Gomphocymbella, and Reimeria and their close ally Encyonema were evaluated using cladistics. These biraphid genera are a polythetic group defined by chloroplast number and type, mode of sexual reproduction, valve orientation and presence of apical pore fields. Character states of valve as well as non-siliceous features were described and then polarized using the outgroup method, with the naviculoid genera Anomoeoneis and Placoneis serving as outgroups. The cladistic analysis suggests two groups of terminal taxa, corresponding to to a predominantly cymbelloid lineage and a gomphonemoid lineage. Didymosphenia, previously thought to be closely allied to gomphonemoid diatoms, is shown to be more closely related to Cymbella. Gomphonema appears to be without distinguishing characteristics. Relationships of the other genera are described. The systematic position of small, doubly-punctate Gomphonema species is discussed.  相似文献   

8.
In benthic samples from the unchannelized Missouri River, the diatoms Nitzschia dissipata (Kütz.) Grun., N. filiformis (W.Sm.) Schütt and N. pseudofonticola Hust. were observed within the mucilage tubes of four tube-forming diatoms: Cymbella prostrata (Berk.) Cl., C. prostrata var. auerswaldii (Rabh.) Reim., Navicula tripunctata var. schizonemoides (V.H.) Patr., and Nitzschia filiformis. Microscopical observations of live and preserved specimens indicated that “invasion” by Nitzschia occurred primarily in older tubes. Data are presented on the environmental conditions in which the tube-formers and their cohabitants have been found.  相似文献   

9.
10.
Motility of estuarine epipelic (mud‐inhabiting) diatoms is an important adaptation to living in biofilms present within fine sediments. Motility allows cells to migrate within the photic zone in response to a wide range of environmental stimuli. The motile responses of two species of benthic diatoms to photon fluence rates and spectral quality were investigated. Cultures of Navicula perminuta (Grunow) in van Heurck and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reimann both exhibited photoaccumulation at ~200 μmol · m?2 · s?1 and photodispersal from photon flux densities (PFDs) of ~15 μmol · m?2 · s?1. Photokinesis (changing cell speed) contributed toward photodispersal for both species, and red light (λ = 681–691 nm) was most effective at inducing this process. N. perminuta showed a phototactic (directional) response, with active movement in response to a light gradient. Although this response was exhibited in white light, these directional responses were only elicited by wavelengths from 430 to 510 nm. In contrast, C. closterium did not exhibit phototaxis under any light conditions used in this study. Motile benthic diatoms thus exhibit complex and sophisticated responses to light quantity and quality, involving combinations of photokinesis and phototaxis, which can contribute toward explaining the patterns of large‐scale cell movements observed in natural estuarine biofilms.  相似文献   

11.
Specimens of Eupodiscus radiatus Bailey from the northeastern Gulf of Mexico were examined with light and scanning electron microscopy. In contrast to previous studies of this taxon, we report the presence of two, rarely one, rimoportulae (labiate processes) between consecutive ocelli. This finding changes our understanding of the phylogenetic relationships in the family Eupodiscaceae.  相似文献   

12.
New structural details of the frustules of the diatom Triceratium favus Ehrenberg seen in the scanning electron microscope are reported. Significant new observations concern the pores of the hexagonal chambers, accessory structures (spines, dendritic processes) on the outer surfaces of the hexagonal chambers, the value margins and girdle structure.  相似文献   

13.
A new marine microalga from the Mediterranean Sea, Crustomastix stigmatica Zingone, is investigated by means of LM, SEM, TEM, and pigment and molecular analyses (nuclear‐encoded small subunit [SSU] rDNA and plastid‐encoded rbcL). Pigment and molecular information is also provided for the related species Dolichomastix tenuilepis Throndsen et Zingone. Crustomastix stigmatica has a bean‐shaped cell body 3–5 μm long and 1.5–2.8 μm wide, with two flagella four to five times the body length. The single chloroplast is pale yellow‐green, cup‐shaped, and lacks a pyrenoid. A small bright yellow stigma is located in the mid‐dorsal part of the cell under the chloroplast membrane. An additional accumulation of osmiophilic globules is at times seen in a chloroplast lobe. Cells lack flat scales, whereas three different types of hair‐like scales are present on the flagella. The main pigments of C. stigmatica are those typical of Mamiellales, though siphonein/siphonaxanthin replaces prasinoxanthin and uriolide is absent. The pigment pool of D. tenuilepis is more similar to that of Micromonas pusilla (Butcher) Manton et Parke and of other Mamiellales. The nuclear SSU rDNA phylogeny shows that the inclusion of C. stigmatica and D. tenuilepis in the Mamiellales retains monophyly for the order. The two species form a distinct clade, which is sister to a clade including all the other Mamiellales. Results of rbcL analyses failed to provide phylogenetic information at both the order and species level. No unique morphological or pigment characteristics circumscribe the mamiellalean clade as a whole nor its two daughter clades.  相似文献   

14.
A correlation between genome size and cell volume has been observed across diverse assemblages of eukaryotes. We examined this relationship in diatoms (Bacillariophyceae), a phylum in which cell volume is of critical ecological and biogeochemical importance. In addition to testing whether there is a predictive relationship across extant species, we tested whether evolutionary divergences in genome size were correlated with evolutionary divergences in cell size (using independent contrasts). We estimated total DNA content for 16 diatom species using a flow cytometer and estimated cell volumes using critical dimensions with scaling equations. Our independent contrast analyses indicated a significant correlated evolution between genome size and cell volume. We then explored the evolutionary and ecological implications of this evolutionary relationship. Diatom cell volume is an important component of the global carbon cycle; therefore, understanding the mechanisms that drive diatom genome evolution has both evolutionary and ecological importance.  相似文献   

15.
The phylogenetic position of Koliella , a chlorophyte characterized by Klebsormidium type cell division, was inferred from analyses of partial 18S rDNA and partial 16S rDNA. Parsimony and distance analyses of separate and combined data sets indicated that the members of Koliella belonged to Trebouxiophyceae, and high decay indices and bootstrap values supported this affinity. However, the genus appeared to be polyphyletic. Koliella spiculiformis , the nomenclatural type of the genus, was allied with Nannochloris eucaryota and the "true" chlorellas ( Chlorella vulgaris , C. lobophora , C. sorokiniana , and C. kessleri ). The close relatives of Koliella longiseta (≡ Raphidonema longiseta ) and Koliella sempervirens appeared to be Stichococcus bacillaris and some species traditionally classified in Chlorella that were characterized by the production of secondary carotenoids under nitrogen-deficient conditions. This clade was also supported by the presence of a relatively phylogenetically stable group I intron (1506) in the 18S rRNA gene. Because of the presence of Klebsormidium type cell division, some authors regarded the members of Koliella as closely related to charophytes. Molecular analyses, however, did not confirm this affinity and suggested that a Klebsormidium type cell division is homoplastic in green plants.  相似文献   

16.
The morphology of strains of Skeletonema Greville emend Sarno et Zingone was examined in LM, TEM, and SEM and compared with sequence data from nuclear small subunit rDNA and partial large subunit rDNA. Eight distinct entities were identified, of which four were known: S. menzelii Guillard, Carpenter et Reimann; S. pseudocostatum Medlin emend. Zingone et Sarno; S. subsalsum (Cleve) Bethge; and S. tropicum Cleve. The other four species were new: S. dohrnii Sarno et Kooistra sp. nov., S. grethae Zingone et Sarno sp. nov., S. japonicum Zingone et Sarno sp. nov., and S. marinoi Sarno et Zingone sp. nov. Skeletonema species fell into four morphologically distinct groups corresponding to four lineages in the small subunit and large subunit trees. Lineage I included S. pseudocostatum, S. tropicum, S. grethae, and S. japonicum. All have external processes of the fultoportulae with narrow tips that connect with those of sibling cells via fork‐, knot‐, or knuckle‐ like junctions. Lineage II included only the solitary species S. menzelii. Lineage III comprised S. dohrnii and S. marinoi. This latter pair have flattened and flared extremities of the processes of the fultoportulae, which interdigitate with those of contiguous valves without forming knots or knuckles. Lineage IV only contained the brackish water species S. subsalsum. Some species also differ in their distribution and seasonal occurrence. These findings challenge the concept of S. costatum as a single cosmopolitan and opportunistic species and calls for reinterpretation of the vast body of research data based on this species.  相似文献   

17.
A new genus of Pfiesteria‐like heterotrophic dinoflagellate, Luciella gen. nov., and two new species, Luciella masanensis sp. nov. and Luciella atlantis sp. nov., are described. These species commonly occur with other small (<20 μm) heterotrophic and mixotrophic dinoflagellates in estuaries from Florida to Maryland and the southern coast of Korea, suggesting a possible global distribution. An SEM analysis indicates that members of the genus Luciella have the enhanced Kofoidian plate formula of Po, cp, X, 4′, 2a, 6″, 6c, PC, 5+s, 5?, 0p, and 2″″. The two four‐sided anterior intercalary plates are diamond shaped. The genus Luciella differs from the other genera in the Pfiesteriaceae by a least one plate in the plate tabulation and in the configuration of the two anterior intercalary plates. An SSU rDNA phylogenetic analysis confirmed the genus as monophyletic and distinct from the other genera in the Pfiesteriaceae. The morphology of Luciella masanensis closely resembles Pfiesteria piscicida Steid. et J. M. Burkh. and other Pfiesteria‐like dinoflagellates in size and shape, making it easily misidentified using LM. Luciella atlantis, in contrast, has a more distinctive morphology. It can be distinguished from L. masanensis and other Pfiesteria‐like organisms by a larger cell size, a more conical‐shaped epitheca and hypotheca, larger rhombic‐shaped intercalary plates, and an asymmetrical hypotheca. The genus Luciella is assigned to the order Peridiniales and the family Pfiesteriaceae based on plate tabulation, plate pattern, general morphology, and phylogenetic analysis.  相似文献   

18.
The complete 18S rRNA gene sequences of three Oocystis A. Braun species (Oocystaceae) and three other chlorococcal algae, Tetrachlorella alternans (G. M. Smith) Korš. (Scenedesmaceae), Makinoella tosaensis Okada (Scenedesmaceae), and Amphikrikos cf. nanus (Fott & Heynig) Hind. (Chlorellaceae) were determined and subjected to four different phylogenetic analysis algorithms. Independent of the reconstruction method, these taxa clustered together as a monophyletic group (Oocystaceae) within the Trebouxiophyceae. This result was supported by high bootstrap values. A comparison of morphological data with the phylogenetic reconstructions indicated that the evolution of Oocystaceae was accompanied by a reduction in the number of plastids. This study fully supports the taxonomic assignment of the Oocystaceae as a distinct family. The diacritic criterion that the cell walls are composed of several cellulose layers with perpendicular fibril orientations is in accordance with the molecular data.  相似文献   

19.
We sequenced the nuclear-encoded small-subunit ribosomal RNA gene (18S rDNA) of Chaetosphaeridium globosum (Nordst.) Klebahn, a microscopic freshwater epiphytic chlorophyte, to assess its phylogenetic affinities in the Chlorophyta. A phylogenetic analysis of a broad sampling of green algal taxa and Chaetosphaeridium confirmed that this alga is a member of the Charophyceae (Streptophyta) as earlier microscopical studies had suggested. However, more detailed phylogenetic analyses of the streptophyte lineage showed that contrary to expectations based on the ultrastructure of the zoospores, the presence of a unique type of setae, the oogamous mode of reproduction, and the occurrence of oscillatory rotations of the cytoplasm, Chaetosphaeridium and Coleochaete are not closely related and do not form a monophyletic clade. Instead, Chaetosphaeridium represents an early branch in the streptophyte lineage that had a near-simultaneous origin as the Charalean clade and a clade formed by all remaining streptophytes examined ( Klebsormidium, Coleochaete, Chlorokybus, Zygnematales, and bryophytes). All phylogenetic inference methods used (neighbor-joining analysis of Kimura distances, maximum likelihood, and maximum parsimony) resulted in essentially the same tree topology. No Group I introns were found in the 18S rDNA coding region of Chaetosphaeridium. Our molecular phylogenetic analysis of Chaetosphaeridium supports a recent cladistic classification of the Streptobionta by Kenrick and Crane in which Chaetosphaeridium is placed in a monotypic division and class, Chaetosphaeridiophyta and Chaetosphaeridiophyceae, respectively.  相似文献   

20.
The taxonomic position of Blastodinium navicula Chatton and B. contortum Chatton, parasites of marine copepods, was investigated on the basis of morphological observations and molecular data. The life cycle of Blastodinium includes a parasitic stage, a trophont, and free‐swimming dinospores. The individual cells in the trophont, as well as the dinospores that they produced, were thecate. Dinospores of B. contortum and Bnavicula had peridinioid plate tabulation formula, demonstrating an affiliation to the order Peridiniales Heackel (subdivision Dinokaryota Fensome et al.). This systematic position is in contrast to current classifications, in which the order Blastodiniales Chatton is thought to represent an early evolutionary branch of the dinokaryote lineage. Small‐subunit rRNA gene sequences were generated from six Blastodinium individuals isolated from three different host species. In phylogenetic analyses based on SSU rRNA genes, Blastodinium spp. branched with the typical dinoflagellates. Even though overall statistical support was low, the analyses suggested that Blastodinium spp. are late‐branching, dinokaryote dinoflagellates. Species currently included in Blastodiniales are all parasites, but they are morphologically and functionally diverse. Emerging molecular data also reveal high genetic diversity, and therefore, the taxonomy of the group requires reevaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号