首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Both NaCl and NaF promoted PGE2 binding to epididymal adipocyte membranes by apparent increase in the binding affinity. In order to distinguish between the effect of fluoride and the ‘salt effect’ of sodium on PGE2 binding, the effects of Mg2+ and guanyl nucleotides on PGE2 binding in the presence of NaCl or NaF were compared. Mg2+ decreased PGE2 binding; high NaF concentration abolished this inhibition, while increased NaCl concentratipns did not affect the Mg2+ inhibition. In the presence of Mg2+ the effects of NaCl and NaF were additive. The enhancement of PGE2 binding by fluoride, unlike sodium, was dependent on the presence of Mg2+. Induction of the membranes with GDPβS, Gpp(NH)p, GTP or GTPγS increased PGE, binding. Gradual increase in NaF concentrations in the presence of guanyl nucleotides resulted in stimulation of PGE2 binding at low NaF concentrations and inhibition of PGE2 binding at higjh NaF concentrations. No changes in the stimulatory action of NaCl on PGE2 binding were observed in the simulatenous presence of NaCl and guanyl nucleotides. A biphasic effect on PGE2 binding was observed with a wide concentration range of guanyl nucleotides. Treatment of the isolated membranes with cholera or pertussis toxins stimulated the adenylyl cyclase activity of the membranes, but failed to influence PGE2 binding. The implications of these findings are discussed.  相似文献   

2.
(1) Streptozotocin-diabetes decreased the responsiveness of noradrenaline- or forskolin-stimulated lipolysis to inhibition by phenylisopropyladenosine (PIA), prostaglandin (E1 (PGE1) and nicotinate in rat adipocytes. (2) Diabetes had no effect on high affinity binding of [3H]PIA to adipocyte plasma membranes. (3) Plasma membranes from diabetic animals had increased abundance of -subunits of Gi1 and Gi2. The effect of pertussis toxin in overcoming inhibition of lipolysis by PIA was delayed in adipocytes from diabetic rats. (4) Diabetes decreased the GTP-dependent right-wards shift in the dose-curve for displacement of the antagonist [3H]DPCPX by PIA in adipocyte plasma membranes. (5) It is concluded that, despite increased abundance of Gi in diabetic adipocytes, less of this functional. This may contribute to reduced sensitivity to PIA, PGE1 and nicotinate and explains some of the loss of control of lipolysis in insulin-dependent diabetes.  相似文献   

3.
Myometrial low speed supernatant prepared from non-pregnant rhesus uteri was incubated with 3H-Prostaglandin (PG) E1 with or without addition of unlabelled prostaglandins. The uptake of 3H-PGE1 was inhibited in a dose dependent fashion by PGE2>PGE1>PGA1>PGF2=PGA1>PGB1=PGB2≥PGD2. PGE1 metabolites inhibited 3H-PGE1 binding in the following order: 13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1=15-keto-PGE1. The specific binding of 3H-PGE1 and 3H-PGF2 was similarly affected by the temperature and time of incubation. Equilibrium binding constants determined using rhesus uteri obtained during the luteal phase of the menstrual cycle indicate the presence of high affinity PGE1 binding sites with an average (n=3) apparent dissociation constant of 2.2 × 10−9M and a lower affinity PGE1 binding site with a Kd 1 × 10−8M. No high affinity — low capacity 3H-PGF2 sites could be demonstrated.

Relative uterine stimulating potencies of some natural prostaglandins and prostaglandin analogs tested after acute intravenous administration in mid-pregnant rhesus monkeys corresponded with the PGE1 binding inhibition of the respective compound. The uterine stimulating potencies of the prostaglandin analogs tested were: (15S)-15-methyl-PGE2=16,16-dimethyl-PGE2>17-phenyl-18,19,20-trinor-P GE2>16 phenoxy-17,18,19,20-tetranor-PGE2=PGE2=PGE1=(15S)-15-methyl-PGE2>PGF2.  相似文献   


4.
Prostaglandin (PG) E1 was demonstrated to stimulate the transfer of phosphatidylcholine and cholesterol esters from human high density lipoproteins (HDL3) to low density lipoproteins (LDL). The enhancement effect of PGE1, on the interlipoprotein lipid transfer was seen at low PG concentrations under conditions of spontaneous exchange as well as in the presence of lipoprotein-depleted plasma, or partly purified plasma lipid exchange protein. PGE2 and PGF2 showed no significant influence on the interlipoprotein lipid transfer. Evidence is presented suggesting that the PGE1-induced stimulation of interlipoprotein lipid exchange results in enhancement of LCAT-catalyzed cholesterol esterification in plasma. It is proposed that the effect of PGE1 is due to the previously described PGE1-induced reorganization of the HDL surface [(1984) FEBS Lett. 173, 291-293] and that PG-lipoprotein interaction may be a factor regulating cholesterol homeostasis.  相似文献   

5.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

6.
Two possible reasons for the structural alterations of cell membranes caused by free radicals are lipid peroxidation and an increase in the intracellular calcium ion concentration. To characterize the alterations in membrane molecular dynamics caused by oxygen-derived free radicals and calcium, human erythrocytes were spin-labeled with 5-doxyl stearic acid, and alterations in membrane fluidity were quantified by electron spin resonance oxidase (0.07 U/mL) decreased membrane fluidity, and the addition of superoxide dismutase and catalase inhibited the effect on membrane fluidity of the hypoxanthine-xanthine oxidase system. Hydrogen peroxide (0.1 and 1 nM) also decreased membrane fluidity and caused alterations to erythrocyte morphology. In addition, a decrease in membrane fluidity was observed in erythrocytes incubated with 2.8 mM CaCl2. On the other hand, incubation of erythrocytes with calcium-free solution decreased the changes in membrane fluidity caused by hydrogen peroxide.

These results suggest that changes in membrane fluidity are directly due to lipid peroxidation and are indirectly the result of increased intracellular calcium concentration. We support the hypothesis that alterations of the biophysical properties of membranes caused by free radicals play an important role in cell injury, and that the accumulation of calcium amplifies the damge to membranes weakened by free radicals.  相似文献   


7.
Abstract: Telencephalic membranes from rats of different embryonic (E16, E19) and postnatal (P2, P7, P14, adult) ages were assessed for α-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA) binding and for immunoreactivity levels of AMPA receptor subunits (GluR1, GluR2/3, and GluR4). In addition, the synaptic markers synaptophysin and NCAM140 (a neural cell adhesion molecule isoform) were examined by immunoblot. The density of [3H]AMPA binding sites increased steadily with advancing age. This increase was due mainly to the development of the large low-affinity component ( K D = 400 n M ) that dominates the [3H]AMPA binding profile of adult rat brain membranes. As resolved by two-site regression analysis, the high-affinity component ( K D = 15 n M ) of the [3H]AMPA binding increased by approximately twofold from E16 to adult, whereas the low-affinity component increased by 25-fold. Staining for GluR1 and GluR2/3 increased steadily with increasing age at all time points examined; synaptophysin and NCAM140 exhibited similar ontogenic immunostaining profiles. GluR4 immunoreactivity was first evident at P14 and increased by adulthood. These results indicate that AMPA receptor density increases steadily during development and that this increase is coincident with the ontogenic expression of other synaptic components. Furthermore, there is a shift toward a preponderance of low-affinity [3H]AMPA binding, which occurs during the period when AMPA receptors are being sorted into postsynaptic regions, suggesting that some element of the postsynaptic membrane environment modulates AMPA receptor properties.  相似文献   

8.
The influence of lipid peroxidation on 5-HT2 receptor binding was examined in prefrontal cortex membranes from sheep brain. Lipid peroxidation was induced with ascorbic acid and ferrous sulphate and measured by the thiobarbituric acid method. In lipid-peroxidized membranes, [3H]ketanserin specific binding was inhibited. The Bmax values decreased by 80%, from 50.1±3.5 fmol/mg protein in control membranes to 10.1±2.0 fmol/mg protein in peroxidized membranes, indicating a decrease in the number of 5-HT2 binding sites. However, the KD values for the [3H]ketanserin specific binding did not significantly change. In order to further characterize [3H]ketanserin binding, the inhibition potency (IC50 values) of antagonists or agonists of serotonin and dopamine receptors for [3H]ketanserin specific binding was determined. In control membranes, the order of the inhibition potency of the drugs tested was the following: ketanserin (−log [IC50] = 8.56±0.70) ritanserin (−log [IC50] = 8.13±0.30) methysergide (−log [IC50] = 7.42±0.50) spiperone (−log [IC50] = 7.23±0.18) serotonin (−log [IC50] = 6.99±0.65) haloperidol (−log [IC50] = 6.95±0.65) dopamine (−log [IC50] = 5.82±0.76). After membrane lipid peroxidation, the IC50 value for ritanserin was significantly increased, suggesting a decreased capacity for displacing [3H]ketanserin specific binding. Other antagonists of 5-HT2 receptors showed apparent increases in IC50 values upon peroxidation, whereas spiperone was shown to be the most potent drug (−log [IC50] = 7.19±1.06) in inhibiting [3H]ketanserin specific binding. A decrease in polyunsaturated fatty acids, namely docosahexaenoic acid (22:6) was also observed in peroxidized membranes. These results indicate a modulating role of the surrounding lipids and of the physical properties of the membranes on the binding activity of 5-HT2 receptors upon the lipid peroxidation process, which can be involved in the tissue impairment that occurs during the aging process and in post-ischemic situations.  相似文献   

9.
A membrane preparation of calf heart left ventricle has been used to study the effect of radical stress on the β-adrenoceptor complex. To this end the membranes were incubated for 30 minutes with several concentrations of hydrogen peroxide. This resulted in a dose dependent peroxidation of the membrane lipids. Preincubation with hydrogen peroxide in the concentration range 10--7--10--3M caused an increase in specific (—)-[125I]-Iodocyanopindolol binding. possihly due to a decrease in membrane fluidity as a result of lipid peroxidation, thus making the receptor protein more accessible. Higher concentrations H2O2 reduced the specific (—)-[125I]-lodocyanopindolol binding, which is most likely the effect of deterioration of the receptor protein by the more pronounced radical stress induced by these higher concentrations. Also adenylate cyclase activity was affected by radical stress. Basal cyclic-AMP production and cyclic-AMP production induced by NaF (10--2 M) or guanylylimidodiphosphate (10--4 M), was suppressed after pretreatment with concentrations of H2O2 above 10--4 M. This indicates a higher sensitivity of the adenylate cyclase toward radical stress when compared to the receptor protein. Our results show that radical stress can perturb β-adrenoceptor function considerably in the heart.  相似文献   

10.
Effects of fatty acids on the growth of Caco-2 cells   总被引:14,自引:0,他引:14  
Epidemiological studies suggest that polyunsaturated fatty acids may protect against colorectal neoplasia. In order to explore this observation, cell proliferation and viability, lipid composition, membrane fluidity, and lipid peroxidation were measured in Caco-2 cells after 48h incubation with various fatty acids. Saturated and monounsaturated fatty acids incorporated less well in the membranes than polyunsaturated fatty acids (PUFAs). All of the PUFAs tested had an inhibitory effect on cell proliferation/viability whereas the saturated and monounsaturated fatty acids did not. Addition of palmitic acid had no significant effect on membrane fluidity whereas unsaturated fatty acids increased membrane fluidity in a dose-dependent manner. PUFAs strongly increased tumor cell lipid peroxidation in a dose-dependent manner. Saturated and monounsaturated fatty acids increased lipid peroxidation in this cell line only at high concentration. Preincubation of Caco-2 cells with vitamin E prevented the inhibition of proliferation/viability, the elevation of the MDA concentration and the increased membrane fluidity induced by PUFAs. Our data indicate that PUFAs are potent inhibitors of the growth of colon cancer cells in vitro.  相似文献   

11.
A change in the environment of rat brain membranes by dialysis from phosphate buffered saline (PBS) to 10 mM potassium phosphate (pH 7.2) led to a 35% loss in delta opioid receptor binding, while alteration of membrane structure on freezing at -20 degrees C for 55 days led to 85% loss of receptor binding. The dialysate, 200 mM KCI and NaCl restored receptor binding lost on dialysis. This K+ and Na+ restabilization of the receptor can be through cation-pi bonding, interactions that are suited to the lipid bilayer. In membranes stored at -20 degrees C, the loss of binding is attributed to increased membrane fluidity by phospholipase A2 action on membrane phospholipids, resulting in an increase of free fatty acids. K+ but not Na+ restabilization of these membrane receptors may be due to the ability of K+ to decrease membrane fluidity.  相似文献   

12.
Actions of endothelin-1 on prostaglandin production by gestational tissues   总被引:1,自引:0,他引:1  
Endothelin-1 (10−11M-10−7M) was incubated with human umbilical vein endothelial cells and cells derived from amnion and decidua and prostaglandin production was determined. The rates of biosynthesis of 6-keto-prostaglandin F1 (6-keto-PGF1) and prostaglandin E2 (PGE2) by endothelial cells were increased significantly by treatment with endothelin-1. Amnion cell PGE2 production was reduced significantly by endothelin-1 treatment whereas decidual PGE2 and prostaglandin F2 production was unaffected by this treatment. Thus, it is possible that endothelins may play a part in the regulation of uteroplacental hemodynamics and the mechanisms of parturition.  相似文献   

13.
Evidence of oxidative stress and the accumulation of fibrillar amyloid beta proteins (Abeta) in senile plaques throughout the cerebral cortex are consistent features in the pathology of Alzheimer disease. To define a mechanistic link between these two processes, various aspects of the relationship between oxidative lipid membrane damage and amyloidogenesis were characterized by chemical and physical techniques. Earlier studies of this relationship demonstrated that oxidatively damaged synthetic lipid membranes promoted amyloidogenesis. The studies reported herein specify that 4-hydroxy-2-nonenal (HNE) is produced in both synthetic lipids and human brain lipid extracts by oxidative lipid damage and that it can account for accelerated amyloidogenesis. Abeta promotes the copper-mediated generation of HNE from polyunsaturated lipids, and in turn, HNE covalently modifies the histidine side chains of Abeta. HNE-modified Abeta have an increased affinity for lipid membranes and an increased tendency to aggregate into amyloid fibrils. Thus, the prooxidant activity of Abeta leads to its own covalent modification and to accelerated amyloidogenesis. These results illustrate how lipid membranes may be involved in templating the pathological misfolding of Abeta, and they suggest a possible chemical mechanism linking oxidative stress with amyloid formation.  相似文献   

14.
The midgut of Dysdercus peruvianus is divided into four sections (V1-V4). All the cells have microvilli ensheathed by a lipoprotein membrane (perimicrovillar membrane) extending toward the lumen as narrow tubes with dead ends. Subcellular fractionation of V1 and V2 tissue in isotonic and hypotonic conditions showed that -glucosidase is associated with membranous structures larger than those associated with β-glucosidase. The /β-glucosidase activity ratio is 34 ± 4 in V1 tissue and 170 ± 10 in membranes recovered from the V1 luminal contents. These membranes are resolved in sucrose gradients into low density (1.087 ± 0.001 g/cm3) -glucosidase-carrying membranes (/β-glucosidase activity ratio of 330±30) and high density (1.132 ± 0.002g/cm3) β-glucosidase-carrying-membranes. Low-density membranes have 1090 ± 60 μg lipid/mg protein and apparently are not contaminated by high-density ones (electron micrographs). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that membranes recovered from V1 luminal contents are composed mainly of a-glucosidase-rich membranes. The data suggest that -glucosidase-rich membranes are perimicrovillar membranes which may be partly lost into luminal contents on dissection, with densities and lipid/protein ratios similar to that of myelin sheaths, in accordance with previous freeze-fracture data. β-Glucosidase-rich membranes are probably microvillar membranes with densities increased by the presence of associated portasomes.  相似文献   

15.
1. The effect of H2O2 (4.7 × 10-9 4.7 × 10-3M) on prostanoid production by isolated glomeruli from normotensive (WKY) and, spontaneously hypertensive rats (SHR) has been studied.

2. Oxidant stress significantly increased synthesis of prostaglandin E2(PGE2), I2(PGI2)and thromboxane A2 (TxA2) by glomeruli from both strains whereas the ratio (PGE2 + PGI2)/TxA2 increased in only SHR.

3. Pre-incubation of glomeruli with the angiotensin converting enzyme inhibitors captopril or lisinopril, had virtually no effect on H2O2-induced synthesis of individual prostanoids nor on the ratio (PGE2 + PGI2)/TA2 by glomeruli from either WKY or SHR.

4. The findings suggest that H2O2-induced changes in glomerular function may be mediated, in part, by PGs but fail to support the suggestion that the ability of ACEI to protect glomeruli from H2O2-induced damage is determined by PGs.  相似文献   

16.
Experiments were carried out on anesthetized dogs to compare the effects of prostaglandin E2 (PGE2), prostacyclin (PGI2) and arachidonic acid (AA) administered intraarterially on gastric blood flow and oxygen consumption during constant arterial pressure perfusion and constant flow perfusion of the stomach. Both PGE2 and PGI2 increased total blood flow and oxygen consumption both in the resting stomach and following histamine stimulation although the effects of PGE2 on the oxygen consumption in stimulated stomach were not statistically significant. On the contrary, AA decreased both gastric blood flow and oxygen consumption in the histamine stimulated stomach. To determine if these compounds can influence gastric oxygen consumption independently of their effects on blood flow, the experiments with constant flow perfusion were performed. Both PGE2 and PGI2 decreased both the perfusion pressure and oxygen consumption in the resting as well as in the histamine-stimulated stomach whereas AA increased perfusion pressure and decreased oxygen consumption during histamine administration. Effects of AA were blocked by indomethacin suggesting that not AA itself but some of its metabolites, most likely thromboxanes were responsible for the hemodynamic and metabolic changes resulting from the contraction of gastric arterioles and precapillary sphincters. On the contrary, both PGE2 and PGI2 caused gastric hyperemia and an increase in oxygen consumption in the resting stomach, but decreased the latter parameter in the stimulated stomach, most probably as a result of secretory inhibition overcoming direct vascular effects of these compounds.  相似文献   

17.
Abstract: Ascorbate-induced lipid peroxidation, as measured by malonyldialdehyde (MDA) production, caused irreversible decreases in Bmax of both [3H]5-HT and [3H]spiperone binding. Cacl2 (4mM) inhibited ascorbateinduced MDA formation at ascorbate concentrations >0.57 mM, but not at ≤ 0.57 mM. Under the standard assay conditions (5.7 mM ascorbate and 4mM CaCl2), Cacl2 inhibited the MDA production casued by ascorbate by 88%, and the loss in [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding when lipid peroxidation was completely inhibited by EDTA. This additional effect of ascorbate was reversible after washing the membranes. Other reducing agents (dithiothreitol, glutathione, and metabisulfite) also decreased the binding of [3H]serotonin. In contrast, [3H]spiperone binding was not affected by ascorbate in the absence of lipid peroxidation or by other reducing agents. These experiments demonstrate that ascorbate has a dual and differential effect on serotonin binding sites. First, ascorbate-induced lipid peroxiation irreversibly inactivates both [3H]5-HT and [3H]spiperone binding. Second, independent of lipid peroxidation, there is a direct, reversible effect of ascorbate on [3H]serotonin but not on [3H]spiperone binding, which is probably due to the difference in the biochemical nature of the two serotonin binding sites.  相似文献   

18.
Abstract: Chronic treatment with the adenosine receptor antagonist caffeine evokes an up-regulation of A1 adenosine receptors and increased coupling of the receptor to G proteins in rat brain membranes. However, chronic agonist exposure has not been explored. Primary cultures of cerebellar granule cells were exposed chronically to A1 adenosine receptor agonists and antagonists. Exposure to the A1 adenosine receptor agonist N 6-cyclopentyladenosine resulted in (1) a time- and concentration-dependent reduction in the density of receptors labeled by 1,3-[3H]dipropyl-8-cyclopentylxanthine, (2) an enhanced ability of guanyl nucleotides to decrease the fraction of A1 adenosine receptor sites displaying high affinity for 2-chloroadenosine, and (3) a functional uncoupling of receptors from adenylyl cyclase (EC 4.6.1.1). The adenosine antagonists caffeine and 8- p -sulfophenyltheophylline produced alterations in A1 adenosine receptor homeostasis that were antipodal to those associated with agonist treatment. Antagonist exposure (1) increased the density of A1 adenosine receptors in cerebellar granule cell membranes, (2) blunted the effect of guanyl nucleotides on receptor coupling to G proteins, and (3) increased the functional coupling of receptors to adenylyl cyclase inhibition. Forskolin treatment of cerebellar granule cells did not affect receptor density, suggesting that cyclic AMP is not involved in the regulation of A1 adenosine receptor expression.  相似文献   

19.
The objectives of this study were (i) to determine if in vivo administration of ethanol to rats produced changes in apparent lipid fluidity and prolactin binding capacity of male prostatic and female hepatic membranes and (ii) to compare the effects of membrane fluidizers (aliphatic alcohols) in vitro on prolactin binding of prostatic and hepatic membranes in control and alcohol-fed animals. In vitro ethanol has been shown by us previously to increase prolactin receptor levels presumably by unmasking cryptic prolactin receptors. The degree of fluidization was monitored by a fluorescence polarization method using 1,6-diphenylhexatriene. Adult male and female rats were given either water or 4% ethanol as the sole source of drinking fluid for a period of 6 weeks. No significant changes in plasma prolactin were observed between control and ethanol-treated groups of either sex. However, the microviscosity parameter, inversely related to lipid fluidity, was increased approx. 34% and 40%, respectively, in male prostatic and female rat hepatic membranes after ethanol feeding. Furthermore, 125I-prolactin binding capacity was decreased approx. 30% and 26%, respectively, in prostatic and hepatic membranes of alcohol fed animals. In vitro treatment with aliphatic alcohols had no effect on either microviscosity or prolactin binding in hepatic or prostatic membranes from ethanol-fed rats, but both fluidized and increased prolactin binding in the same membrane preparations from control rats. Our observations are consistent with the direct relationship between membrane fluidity and prolactin receptor levels. The changes in prostatic and hepatic membranes after alcohol feeding, namely decreased prolactin receptor levels, decreased fluidity and increased resistance to the fluidizing effects of in vitro aliphatic alcohols may reflect a fundamental membrane defect.  相似文献   

20.
I. E. Wanke  M. Huang  O. P. Rorstad 《Peptides》1990,11(6):1157-1161
We investigated the effect of surgical castration of male rats on the binding of [Tyr(125I)10]VIP to receptors on the anterior pituitary gland, superior mesenteric artery, brain, liver, and prostate gland. In anterior pituitary membranes the maximum number of VIP binding sites was increased whereas binding affinity was decreased 24 hours following castration. In particular, the high affinity equilibrium dissociation constant (KD) increased from 0.13±0.02 nM (mean±SEM) to 0.67±0.07 nM and the maximum number of high affinity binding sites (Bmax) increased from 71±9 to 470±112 fmol/mg protein. No significant change was observed in the other tissues. Anesthesia or sham operation did not alter the anterior pituitary VIP receptor binding parameters. The changes in the VIP receptor 24 hours after castration were prevented by prior injection of testosterone. These findings demonstrate tissue-selective alterations to the anterior pituitary VIP receptor by castration that are likely mediated by withdrawal of testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号