首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the first time the total synthesis of the peptaibol antibiotic zervamicin IIB is described. Synthesis of this peptaibol was achieved by the Fmoc/tert-butyl strategy in solution using a fragment condensation approach. Three fragments of zervamicin IIB were obtained by stepwise elongation with Fmoc amino acids using BOP as a coupling reagent. For the introduction of the highly sterically hindered α-aminoisobutyric acid residues BOP/DMAP activation was applied. The Fmoc group was removed by reaction with 0.1 M NaOH in dioxane/methanol/water (30/9/1, v/v/v). Peptide fragments were coupled by means of a new coupling reagent, CF3-PyBOP. Using the strategy developed, zervamicin IIB and two analogues specifically deuterium-labelled at different positions of the glutamine-11 residue have been synthesized in 40% overall yield based on the isotopically labelled amino acid and with 98±2% of isotope enrichment. FAB mass spectroscopy, 600 MHz 1H-NMR spectroscopy and high-performance liquid chromatography provided convincing evidence that the synthetic products, zervamicin IIB and its deuterium-labelled analogues, fully correspond to the naturally occurring zervamicin IIB. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The topologies of zervamicin II and alamethicin, labeled with (15)N uniformly, selectively, or specifically, have been investigated by oriented proton-decoupled (15)N solid-state NMR spectroscopy. Whereas at lipid-to-peptide (L/P) ratios of 50 (wt/wt) zervamicin II exhibits transmembrane alignments in 1,2-dicapryl (di-C10:0-PC) and 1,2-dilauroyl (di-C12:0-PC) phosphatidylcholine bilayers, it adopts orientations predominantly parallel to the membrane surface when the lengths of the fatty acyl chains are extended. The orientational order of zervamicin II increases with higher phospholipid concentrations, and considerable line narrowing is obtained in di-C10:0-PC/zervamicin II membranes at L/P ratios of 100 (wt/wt). In contrast to zervamicin, alamethicin is transmembrane throughout most, if not all, of its length when reconstituted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. The (31)P solid-state NMR spectra of all phospholipid/peptaibol samples investigated show a high degree of headgroup order, indicating that the peptides do not distort the bilayer structure. The observed differences in peptide orientation between zervamicin and alamethicin are discussed with reference to differences in their lengths, helical conformations, distribution of (hydroxy)proline residues, and hydrophobic moments. Possible implications for peptaibol voltage-gating are also described.  相似文献   

3.
Zervamicin IIB is a 16 amino acid peptaibol that forms voltage dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. Stability of the hinge region and intermolecular interactions were investigated in the N- and C-terminally spin-labelled peptide analogues. Intermolecular and intramolecular paramagnetic enhancement indicates that zervamicin behaves as a rigid helical rod in methanol solution. There are no high amplitude hinge-bending motions, and the peptaibol is monomeric up to concentration 1.5 mM. Stability of the hinge region illustrates the helix stabilising propensity of the Pro residue in membrane mimic environments and implies absence of significant conformational rearrangement due to voltage peptaibol activation.  相似文献   

4.
Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution.  相似文献   

5.
Zervamicins IIA and IIB are members of the peptaibol family of peptide antibiotics. They are produced by the fungus Emericellopsis salmosynnemata. Peptaibols are known to be of potential usefulness for chemotherapeutic applications, as are other secondary fungal metabolites. Previously, we have found zervamicins to decrease spontaneous locomotor activity in mice, suggesting their neurotropic properties on an equal footing with antimicrobial activity. The current study deals with behavioral effects of zervamicins IIA and IIB in mice. According to our results, both zervamicins induce a reliable decrease in locomotion and exploratory activity measured in the hole-board test. The behavioral effects of zervamicin IIA become apparent at lower dosages (0.05-2.0 mg/kg) as compared with zervamicin IIB (0.5-12.0 mg/kg). The experiments on behavioral effects in the elevated plus maze test showed that both zervamicins caused a reliable decrease in the number of head-dippings, open-arm entries, and rearings. The observed behavioral effects may be rather associated with a decrease in the exploratory activity than with anxiety-related responses in mice. Zervamicins induced depression-like behavior of experimental animals in the forced-swim test. Both peptaibols reduce physical endurance and change motor coordination of experimental animals in the bar-holding test. Taken together, the data obtained clearly indicate that both zervamicins possess neuroleptic activity.  相似文献   

6.
Trichogin GA IV is a special member of a class of peptaibols that are linear peptide antibiotics of fungal origin, characterised by the presence of a variable number of alpha-aminoisobutyric acid residues, an acyl group at the N-terminus and a 1,2-amino alcohol at the C-terminus. Most of the peptaibols display ion-channel-forming or at least membrane-modifying properties. The 11-residue-long trichogin GA IV is not only one of shortest peptaibols, but it is also unique for its n-octanoyl group instead of the more common found acetyl group at the N-terminus. For the first time we have found that this lipopeptaibol is able to enhance conduction of monovalent cations through membranes of large unilamellar vesicles (LUVs). The influence of the [Leu-OMe]trichogin GA IV analogue (TRI) on ion permeation was studied under a variety of conditions (lipid composition, lipid-to-peptide ratio and a transmembrane potential). Parallel experiments were performed with the 16-residue long, channel-forming peptaibol, zervamicin (ZER). For the two peptides, the permeability between K(+) and Na(+) was found to be different. In addition, the ion diffusion rate dependencies on the peptide concentration are observed to be different. This might indicate that a different number of aggregated molecules are involved in the rate-limiting step, i.e. 3-4 (TRI) and 4-7 (ZER). In the presence of TRI, dissipation of the transmembrane potential, Delta psi, was observed with a rate to be dependent on the magnitude of both initial Delta psi and peptide concentration. Both peptides were activated by a cis-positive but not by cis-negative Delta psi. Under identical conditions the ion-conducting efficiency of zervamicin was 100-200 times higher than that of trichogin. Our results show that, unlike for zervamicin, the membrane-modifying activity of trichogin is not associated with a channel mechanism.  相似文献   

7.
Analogues of 16-membered peptide antibiotic zervamicin IIB with the Gln3 and Gln11 residues 15N-labeled at the C alpha-atoms were synthesized by coupling the antibiotic segments (1-4), (5-9), and (10-16). In turn, these were prepared by a stepwise chain elongation in solution starting from their C-termini using benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as an activating agent. The sterically hindered 2-aminoisobutyric acid was introduced by the BOP-dimethylaminopyridine system with the preactivation of the carboxyl component. The segment condensation was performed with the use of the 6-trifluoromethylbenzotriazol-1-yloxy-tris(pyrrolidino)phosphonium hexafluorophosphate activating reagent. The homogeneity of the resulting zervamicin analogues was confirmed by HPLC, and their structures were proved by NMR spectroscopy and FAB mass spectrometry.  相似文献   

8.
The protected 11 amino acid segment (6-16) of the peptaibol zervamicin II-2 was synthesized by using the 'azirine/oxazolone method' for the introduction of all Aib residues. Whereas a 2,2-dimethyl-2H-azirin-3-amine was used as the building block for Aib(7), methyl 2,2-dimethyl-2H-azirine-3-prolinate and -3-(3-hydroxyprolinate) proved to be ideally suited as dipeptide synthons for the introduction of Aib-Pro and Aib-Hyp, respectively. The coupling of Z-protected amino acids or peptide acids with the 2H-azirin-3-amines were performed in 75% to quantitative yield.  相似文献   

9.
A comparative study has been made of the molecular dynamics of zervamicin II (an antimicrobial peptide of the peptaibol group, which has channel-forming activity) in water and methanol. The influence of amino acid substitutions on the dynamics and stability of the peptide structure has been investigated. The amino acid sequence responsible for the absence of swivel motions in short peptaibols has been determined.  相似文献   

10.
Chrysospermin C is a 19-residue peptaibol capable of forming transmembrane ion channels in phospholipid bilayers. The conformation of chrysospermin C bound to dodecylphosphocholine micelles has been solved using heteronuclear NMR spectroscopy. Selective 15N-labeling and 13C-labeling of specific alpha-aminoisobutyric acid residues was used to obtain complete stereospecific assignments for all eight alpha-aminoisobutyric acid residues. Structures were calculated using 339 distance constraints and 40 angle constraints obtained from NMR data. The NMR structures superimpose with mean global rmsd values to the mean structure of 0. 27 A (backbone heavy atoms) and 0.42 A (all heavy atoms). Chrysospermin C bound to decylphosphocholine micelles displays two well-defined helices at the N-terminus (residues Phe1-Aib9) and C-terminus (Aib13-Trp-ol19). A slight bend preceding Pro14, i.e. encompassing residues 10-12, results in an angle of approximately 38 degrees between the mean axes of the two helical regions. The bend structure observed for chrysospermin C is compatible with the sequences of all 18 long peptaibols and may represent a common 'active' conformation. The structure of chrysospermin C shows clear hydrophobic and hydrophilic surfaces which would be appropriate for the formation of oligomeric ion channels.  相似文献   

11.
Summary Synthesis of zervamicin IIB, specifically labeled at the α-position of glutamine-11 with15N, was achieved by the Fmoc/tert.-butyl strategy in solution using a fragment condensation approach. Three fragments of zervamicin IIB were obtained by stepwise elongation with Fmoc amino acids using BOP as a coupling reagent. For the introduction of the highly sterically hindered α-aminoisobutyric acid residues, BOP/DMAP activation was applied. Peptide fragments were coupled by means of the coupling reagent, CF3-PyBOP. Using the strategy developed, zervamicin IIB specifically15N labeled has been synthesized in 30% overall yield based on the isotopically labeled amino acid. From 600 MHz NMR spectroscopy the position of the15N-label was clearly detected. The isotope enrichment (98 ±2%) was determined by FAB-mass spectrometry.  相似文献   

12.
Analogues of 16-membered peptide antibiotic zervamicin IIB with the Gln3 and Gln11 residues15N-labeled at the Cα-atoms were synthesized by coupling the antibiotic segments (1–4), (5–9), and (10–16). In turn, these were prepared by a stepwise chain elongation in solution starting from theirC-termini using benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as an activating agent. The sterically hindered 2-aminoisobutyric acid was introduced by the BOP-dimethylaminopyridine system with the preactivation of the carboxyl component. The segment condensation was performed with the use of the 6-trifluoromethylbenzotriazol-1-yloxy-tris(pyrrolidino)phosphonium hexafluorophosphate activating reagent. The homogeneity of the resulting zervamicin analogues was confirmed by HPLC, and their structures were proved by NMR spectroscopy and FAB mass spectrometry.  相似文献   

13.
Ampullosporin A is a 15-mer peptaibol type polypeptide that induces pigment formation by the fungus Phoma destructiva, forms voltage-dependent ion channels in membranes and exhibits hypothermic effects in mice. The structure of ampullosporin A has been determined by x-ray crystallography. This is the first three-dimensional (3D) structure of the peptaibol subfamily SF6. From the N-terminus to residue 13 the molecule adopts an approximate right-handed alpha-helical geometry, whereas a less regular structure pattern with beta-turn characteristics is found in the C-terminus. Even though ampullosporin A does not contain a single proline or hydroxyproline it is significantly bent. It belongs to both the shortest and the most strongly bent peptaibol 3D structures. The straight structure part encompasses residues Ac-Trp(1)-Aib(10) and is thus less extended than the alpha-helical subunit. The 3D structure of ampullosporin A is discussed in relation to other experimentally determined peptaibol structures and in the context of its channel-forming properties. As a part of this comparison a novel bending analysis based on a 3D curvilinear axis describing the global structural characteristics has been proposed and applied to all 3D peptaibol structures. A sampling of 2500 conformations using different molecular dynamics protocols yields, for the complete ampullosporin A structure, an alpha-helix as the preferred conformation in vacuo with almost no bend. This indicates that solvent or crystal effects may be important for the experimentally observed peptide backbone bending characteristics of ampullosporin A.  相似文献   

14.
Zervamicin IIB (Zrv-IIB) is a channel-forming peptaibol antibiotic of fungal origin. The measured transhydrogen bond (3h)J(NC') couplings in methanol solution heaving average value of -0.41 Hz indicate that the stability of the Zrv-IIB helix in this milieu is comparable to the stability of helices in globular proteins. The N-terminus of the peptide forms an alpha-helix, whereas 3(10)-helical hydrogen bonds stabilize the C-terminus. However, two weak transhydrogen bond peaks are observed in a long-range HNCO spectrum for HN Aib(12). Energy calculations using the Empirical Conformation Energy Program for Peptides (ECEPP)/2 force field and the implicit solvent model show that the middle of the peptide helix accommodates a bifurcated hydrogen bond that is simultaneously formed between HN Aib(12) and CO Leu(8) and CO Aib(9). Several lowered (3h)J(NC') on a polar face of the helix correlate with the conformational exchange process observed earlier and imply dynamic distortions of a hydrogen bond pattern with the predominant population of a properly folded helical structure. The refined structure of Zrv-IIB on the basis of the observed hydrogen bond pattern has a small ( approximately 20 degrees ) angle of helix bending that is virtually identical to the angle of bending in dodecylphosphocholine (DPC) micelles, indicating the stability of a hinge region in different environments. NMR parameters ((1)HN chemical shifts and transpeptide bond (1)J(NC') couplings) sensitive to hydrogen bonding along with the solvent accessible surface area of carbonyl oxygens indicate a large polar patch on the convex side of the helix formed by three exposed backbone carbonyls of Aib(7), Aib(9), and Hyp(10) and polar side chains of Hyp(10), Gln(11), and Hyp(13). The unique structural features, high helix stability and the enhanced polar patch, set apart Zrv-IIB from other peptaibols (for example, alamethicin) and possibly underlie its biological and physiological properties.  相似文献   

15.
Chugh JK  Brückner H  Wallace BA 《Biochemistry》2002,41(43):12934-12941
Trichotoxin_A50E is an 18-residue peptaibol antibiotic which forms multimeric transmembrane channels through self-association. The crystal structure of trichotoxin has been determined at a resolution of 0.9 A. The trichotoxin sequence contains nine helix-promoting Aib residues, which contribute to the formation of an entirely helical structure that has a central bend of 8-10 degrees located between residues 10-13. Trichotoxin is the first solved structure of the peptaibol family that is all alpha-helix as opposed to containing part or all 3(10)-helix. Gln residues in positions 6 and 17 produce a polar face, and are proposed to form the channel lumen. An octameric model channel has been constructed from the crystal structure. It has a central pore of approximately 4-5 A radius, a size sufficient to enable transport of ions, with a constricted region at one end, formed by a ring of Gln6 residues. Electrostatic calculations are consistent with it being a cationic channel.  相似文献   

16.
In this paper, the N-terminus of glycoprotein-41, the HIV-1 fusion peptide, was studied by molecular dynamics simulations in an explicit sodium dodecyl sulfate micelle. The simulation provides a detailed picture of the equilibrium structure and peptide stability as it interacts with the micelle. The equilibrium location of the peptide shows the peptide at the surface of the micelle with hydrophobic residues interacting with the micelle's core. At equilibrium, the peptide adopts an alpha-helical structure from residues 5-16 and a type-1 beta-turn from 17-20 with the other residues exhibiting more flexible conformations. The primary hydrophobic interactions with the micelle are from the leucine and phenylalanine residues (Leu-7, Phe-8, Leu-9, Phe-11, Leu-12) while the alanine and glycine residues (Ala-1, Gly-3, Gly-5, Ala-6, Gly-10, Gly-13, Ala-14, Ala-15, Gly-16, Gly-10, Ala-21) interact favorably with water molecules. The results suggest that Phe-8, part of the highly conserved FLG motif of the fusion peptide, plays a key role in the interaction of the peptide with membranes. Our simulations corroborate experimental investigations of the fusion peptide in SDS micelles, providing a high-resolution picture that explains the experimental findings.  相似文献   

17.
Synthesis of zervamicin IIB, specifically labeled at the -position of glutamine-11 with 15N, was achieved by the Fmoc/tert.-butyl strategy in solution using a fragment condensation approach. Three fragments of zervamicin IIB were obtained by stepwise elongation with Fmoc amino acids using BOP as a coupling reagent. For the introduction of the highly sterically hindered -aminoisobutyric acid residues, BOP/DMAP activation was applied. Peptide fragments were coupled by means of the coupling reagent, CF3-PyBOP. Using the strategy developed, zervamicin IIB specifically 15N labeled has been synthesized in 30% overall yield based on the isotopically labeled amino acid. From 600 MHz NMR spectroscopy the position of the 15N-label was clearly detected. The isotope enrichment (98 ± 2%) was determined by FAB-mass spectrometry.  相似文献   

18.
19.
Exendin-4, a 39 amino acid peptide originally isolated from the oral secretions of the lizard Heloderma suspectum, has been shown to share certain activities with glucagon-like-peptide-1 (GLP-1), a 30 amino acid peptide. We have determined the structuring preferences of exendin-4 and GLP-1 by NMR in both the solution and dodecylphosphocholine (DPC) micelle-associated states. Based on both chemical shift deviations and the pattern of intermediate range NOEs, both peptides display significant helicity from residue 7 to residue 28 with greater fraying at the N-terminus. Thornton and Gorenstein [(1994) Biochemistry 33, 3532-3539] reported that the presence of a flexible, helix-destabilizing, glycine at residue 16 in GLP-1 was an important feature for membrane and receptor binding. Exendin-4 has a helix-favoring glutamate as residue 16. In the micelle-associated state, NMR data indicate that GLP-1 is less helical than exendin-4 due to the presence of Gly16; chemical shift deviations along the peptide sequence suggest that Gly16 serves as an N-cap for a second, more persistent, helix. In 30 vol-% trifluoroethanol (TFE), a single continuous helix is evident in a significant fraction of the GLP-1 conformers present. Exendin-4 has a more regular and less fluxional helix in both media and displays stable tertiary structure in the solution state. In the micelle-bound state of exendin-4, a single helix (residues 11-27) is observed with residues 31-39 completely disordered and undergoing rapid segmental motion. In aqueous fluoroalcohol or aqueous glycol, the Leu21-Pro38 span of exendin-4 forms a compact tertiary fold (the Trp-cage) which shields the side chain of Trp25 from solvent exposure and produces ring current shifts as large as 3 ppm. This tertiary structure is partially populated in water and fully populated in aqueous TFE. The Leu21-Pro38 segment of exendin-4 may be the smallest protein-like folding unit observed to date. When the Trp-cage forms, fraying of the exendin-4 helix occurs exclusively from the N-terminus; backbone NHs for the C-terminal residues of the helix display H/D exchange protection factors as large as 10(5) at 9 degrees C. In contrast, no tertiary structure is evident when exendin-4 binds to DPC micelles. An energetically favorable insertion of the tryptophan ring into the DPC micelle is suggested as the basis for this change. With the exception of exendin-4 in media containing fluoro alcohol cosolvents, NMR structure ensembles generated from the NOE data do not fully reflect the conformational averaging present in these systems. Secondary structure definition from chemical shift deviations may be the most appropriate treatment for peptides that lack tertiary structure.  相似文献   

20.
A simple procedure for the preparation of the specifically labelled peptide antibiotic zervamicins IC, IIA and IIB has been developed. The zervamicin molecules are labelled with stable isotopes by culturing the Emericellopsis salmosynnemata on a well-defined synthetic medium containing the highly isotopically enriched amino acid. To obtain the peptide with the specifically and highly enriched amino acid residue, precautions have been taken to prevent any de novo biosynthesis of the particular amino acid from unlabelled precursors. The enrichment of the labelled peptide is determined by mass spectrometric analysis. Following this method we have incorporated [2′,4′, 5′,6′,7′-2H5]-L -Trp-1, [1′-15N]-L -Trp-1 and [2′, 3′,4′,5′,6′-2H5]-L - Phl-16 into zervamicins IC, IIA and IIB on the preparative scale and without scrambling of the label. Thus, using the procedures described, isotopically labelled zervamicins can be prepared, allowing them to be studied by solid- state NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号