首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactoferrin containing physiological amounts of iron is an inhibitor of lipid peroxidation induced by iron(III) salts and ascorbic acid. It might therefore help to protect neutrophils, inflammatory foci and secretions from metal-ion-dependent oxidative damage.  相似文献   

2.
The inhibition of lipid peroxidation by oligomeric derivatives synthesized from prostaglandin E1 (PGE1) and PGB2 was studied using two rat models. In an in vitro model, the brain was exposed to decapitation-ischemia, the cortex was removed and homogenized, and the formation of thiobarbituric acid reactive substances (TBAR) was measured after exposing the homogenate to in vitro reoxygenation either in the presence or absence of oligomers. It was found that these oligomers could inhibit lipid peroxidation, and that their activities were higher than that of superoxide dismutase (SOD). In an in vivo administration model, either the oligomer or the vehicle was injected i.p. 30 min before decapitation. The brain was exposed to decapitation-ischemia, the cortex was homogenized and exposed to 'in vitro' reoxygenation, after which TBAR value was determined. Ester-type compounds had a greater activity than free-acid type compounds in inhibiting lipid peroxidation. A possible mechanism of the protective effect of these oligomers in ischemia/reperfusion injury may be to scavenge oxygen free radicals.  相似文献   

3.
First functional events during peroxidation in mitochondria consisted in a progressive inhibition of the phosphorylating and uncoupled respiration with succinate and glutamate/malate as substrates, whereas the resting state respiration during the same period was virtually not influenced. The membrane potential registered at a time with the respiration rates was capable of being built up for a relatively long time interval with only minor decreases, and broke down rather promptly when the active respiration was highly diminished. Inhibition of respiration proceeded mainly during the initiation phase of peroxidation. Lag phases of varied length, of malondialdehyde formation which were predominantly attributed to the iron/protein ratios correlated closely with different time intervals needed to attain maximal inhibition of respiration and decrease in glutathione. Hence, the lessening of respiration, drop of membrane potential and loss of the antioxidant, glutathione, represent early stages in the causal chain of events which precede the onset of intensive lipid peroxidation.  相似文献   

4.
Peroxidation of rat liver microsomes and of phospholipid isolated from them was studied using iron(III) and ascorbate initiation. One-half equivalent of citrate per iron equivalent maintained solubility of the metal ion at neutral pH. Several metal chelators, including additional citrate, blocked peroxidation, but catalase did not. These characteristics are consistent with those reported by others (D. M. Miller and S. D. Aust (1989) Arch. Biochem. Biophys. 271, 113-119). Several antioxidants, principally tocopherol analogues and nitroxides, and, as well, a nonenzymatic component of "thymol-free" catalase, potently blocked lipid peroxidation, or, equivalently, dioxygen depletion from suspensions of peroxidizing microsomes. Chromanols were the most active antioxidants. No thiol studied had significant antioxidant activity in the test system.  相似文献   

5.
Catechol derived siderophores are the most powerful currently known iron chelators. We have intended tripodal ligands built with o,o′ dihydroxy biaryl subunits (A, B, and C). We described antioxidant properties of this new family of iron chelators. Superoxidedependent hydroxyl radical system was used. Peroxidation of different lipid-containing systems (liposomes, erythrocyte membrane ghosts, tissue homogenates) were also investigated. The antioxidant properties of these new chelators have been related to that of desferrioxamine, as a reference compound. In general manner, the results depended mainly on the model used in the assay. However, C presents an antioxidant effect close to that of desferrioxamine.  相似文献   

6.
7.
A group of benzylisoquinoline alkaloids, including five simple benzylisoquinolines, three phtalideisoquinolines, six aporphines, three protoberberines, and two benzophenanthridines, have been studied as inhibitors of lipid peroxidation stimulated by Fe2+/cysteine in rat liver microsomal fractions. Protopapaverine, apomorphine, laudanosoline, tetrahydroberberine, isoboldine, bulbocapnine, boldine, anonaine, glaucine, and stepholidine showed antiperoxidative effects, and structure-activity relationships were established. In simple benzylisoquinolines, the presence of phenolic hydroxyls or similar reactive groups is necessary for inhibition of peroxidation, while in aporphines and protoberberines nonhydroxylated compounds can exert antiperoxidative effects. The phtalideisoquinolines and benzophenanthridines tested were inactive.  相似文献   

8.
The antioxidant effect of alpha-tocopherolquinone and alpha-tocopherolhydroquinone was studied in liposomes and rat liver submitochondrial particles. Both alpha-tocopherolquinone and alpha-tocopherolhydroquinone inhibit lipid peroxidation induced by ascorbate/Fe2+ in liposomes and by cumene hydroperoxide in submitochondrial particles. Alpha-tocopherolhydroquinone is much more effective than alpha-tocopherolquinone in inhibiting lipid peroxidation. Submitochondrial particles, depleted of ubiquinones and reincorporated with alpha-tocopherolquinone, are protected from lipid peroxidation only in the presence of succinate. Alpha-tocopherolquinone cannot replace endogenous ubiquinones in the respiratory chain function, nevertheless it can be reduced by the mitochondrial respiratory chain substrates, presumably through the reduced ubiquinones.  相似文献   

9.
The antioxidant properties of S -nitrosoglutathione, a nitric oxide-derived product were studied in different experimental systems. By using the crocin bleaching test, S -nitrosoglutathione, in the presence of copper ions, shows an antioxidant capacity about six times higher than that of Trolox c and referable to the interception of peroxyl radicals by nitric oxide. Copper alone shows a modest inhibitory action, which is about seven times lower than that of Trolox c. S -nitrosoglutathione prevents lipid peroxidation induced by the well-known Fe 2+ /ascorbate system (IC 50 =450 μM) and the inhibitory effect is strongly reinforced by the presence of copper ions (IC 50 =6.5 μM). In addition, cumene hydroperoxide-induced lipid peroxidation is markedly decreased by S -nitrosoglutathione, provided that copper ions, maintained reduced by ascorbate, are present. Decomposition of S -nitrosoglutathione through metal catalysis and/or the presence of reducing agents and the consequent release of nitric oxide are of crucial importance for eliciting the antioxidant power. In this way, copper ions and/or reducing species with low antioxidant potency are able to promote the formation of an extremely strong antioxidant species such as nitric oxide.  相似文献   

10.
The anti-oestrogen drug tamoxifen is an inhibitor of lipid peroxidation in rat liver microsomes and in phospholipid liposomes. Its cis isomer and N-desmethyl form are weaker inhibitors, but 4-hydroxytamoxifen is much more powerful. It is possible that the antioxidant property of tamoxifen might contribute to its biological actions.  相似文献   

11.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

12.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

13.
A number of yeasts and filamentous fungi, including agents of skin disease (dermatophytes), were tested and found to be susceptible to inhibition by lactoferricin B. Effective concentrations varied within the range of 3 to 60 μg ml-1, depending on the strain and culture medium used. Lactoferricin B inhibited fungal uptake of 3H-glucose with effectiveness similar to polymyxin B, suggesting that it may target the cell membrane. It caused a profound change in ultrastructural features of the dermatophyte Trichophyton mentagrophytes.  相似文献   

14.
Ceruloplasmin (CP) was found to inhibit xanthine oxidase and ferritin-dependent peroxidation of phospholipid liposomes, as evidenced by decreased malondialdehyde formation. Ceruloplasmin was also shown to inhibit superoxide-mediated mobilization of iron from ferritin, in a concentration-dependent manner, as measured spectrophotometrically using the iron(II) chelator bathophenanthroline sulfonate. Ceruloplasmin failed to function as a peroxyl radical-scavenging antioxidant as evidenced by its inability to inhibit free radical-initiated peroxidation of linoleic acid, suggesting that CP inhibited lipid peroxidation by affecting the availability of ferritin-derived iron. In addition, CP scavenged xanthine oxidase-derived superoxide as measured spectrophotometrically via its effect on cytochrome c reduction. However, the extent of the superoxide scavenging of CP did not quantitatively account for its effects on iron release, suggesting that CP inhibits superoxide-dependent mobilization of ferritin iron independently of its ability to scavenge superoxide. The effects of CP and apoferritin on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. In the absence of apoferritin, CP exhibited a concentration-dependent prooxidant effect. However, CP-dependent, iron-catalyzed lipid peroxidation was inhibited by the addition of apoferritin. Apoferritin did not function as a peroxyl radical-scavenging antioxidant but was shown to incorporate iron in the presence of CP. These data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation largely via its ability to reincorporate reductively mobilized iron back into ferritin.  相似文献   

15.
In an effort to understand the properties of asbestos fibres that might contribute to their being toxic, we incubated three different varieties of asbestos with phospholipid emulsions and looked for evidence of lipid peroxidation. Although all three types of asbestos were able to catalyse lipid peroxidation in the native state, this catalytic activity was inhibited by pre-washing of the asbestos with the iron chelator desferroxamine. This suggests that: lipid peroxidation may be one of the mechanisms by which asbestos produces tissue injury, and treatment with iron chelators might diminish the potential to produce this injury.  相似文献   

16.
A physiologically diverse range of Gram-positive and Gram-negative bacteria was found to be susceptible to inhibition and inactivation by lactoferricin B, a peptide produced by gastric pepsin digestion of bovine lactoferrin. The list of susceptible organisms includes Escherichia coli, Salmonella enteritidis, Klebsiella pneumoniae, Proteus vulgaris, Yersinia enterocolitica, Pseudomonas aeruginosa, Campylobacter jejuni, Staphylococcus aureus, Streptococcus mutans, Corynebacterium diphtheriae, Listeria monocytogenes and Clostridium perfringens. Concentrations of lactoferricin B required to cause complete inhibition of growth varied within the range of 0.3 to 150 micrograms/ml, depending on the strain and the culture medium used. The peptide showed activity against E. coli O111 over the range of pH 5.5 to 7.5 and was most effective under slightly alkaline conditions. Its antibacterial effectiveness was reduced in the presence of Na+, K+, Mg2+ or Ca2+ ions, or in the presence of various buffer salts. Lactoferricin B was lethal, causing a rapid loss of colony-forming capability in most of the species tested. Pseudomonas fluorescens, Enterococcus faecalis and Bifidobacterium bifidum strains were highly resistant to this peptide.  相似文献   

17.
The efficiencies of sinapic acid and its derivatives syringic acid, syringaldehyde, three sinapoyl esters (ethyl, propyl, butyl sinapates), 4-vinylsyringol and sinapine were investigated for prevention of lipid peroxidation in correlation with their interactions with model lipid membrane systems. Significant antioxidant activities of propyl and butyl sinapates were seen by fluorimetric assay in phosphatidylcholine liposomes as model membrane using C11-BODIPY581/591 lipophilic fluorescent probe. The sinapic acid esters also had the highest impact on membrane structural properties, as observed by differential scanning calorimetry and fluorescence polarisation measurements. The greatest protection of phospholipids from peroxidation by these esters correlated well with their polarity and insertion into the lipid bilayer.  相似文献   

18.
牛乳铁蛋白肽是由牛乳铁蛋白经消化酶水解产生的一类具有广谱抑菌活性的短肽;乳酸乳球菌作为食品级微生物,既有天然的益生作用,又是理想的表达牛乳铁蛋白肽的载体。【目的】探究重组乳酸乳球菌pAMJ399-LFcinBA/MG1363表达牛乳铁蛋白肽的抑菌活性。【方法】利用牛乳铁蛋白肽标准品绘制定量标准曲线来确定重组牛乳铁蛋白肽的含量,利用牛津杯法及微量肉汤稀释法测定重组牛乳铁蛋白肽对大肠杆菌、金黄色葡萄球菌等35株细菌的抑菌活性及最小抑菌浓度,利用扫描电镜、透射电镜、荧光显微镜、凝胶阻滞试验、黏附试验来探究重组牛乳铁蛋白肽对菌体结构、细菌DNA及黏附力的影响,利用CCK-8检测其对RAW 264.7细胞的毒性作用,并对小鼠红细胞溶血率进行测定。【结果】重组乳酸乳球菌上清中牛乳铁蛋白肽的浓度为24.39μg/mL,重组牛乳铁蛋白肽对测试的25株致病菌均有不同程度的抑制作用,抑菌浓度范围在16–128μg/mL,但对9株乳酸菌以及粪肠球菌没有明显的抑制作用,对大肠杆菌、金黄色葡萄球菌、多杀性巴氏杆菌、鸡白痢沙门菌的菌体完整性具有不同程度的破坏作用,其主要作用靶点为细菌的细胞膜,可以与细菌DNA结合...  相似文献   

19.
Inhibition of protein synthesis by products of lipid peroxidation   总被引:1,自引:0,他引:1  
Effects of lipid peroxidation products on in vivo and in vitro protein synthesis have been studied. Malondialdehyde (MDA), a product, and a routinely used index of lipid peroxidation, inhibits in vivo protein synthesis in the two mosses, Tortula ruralis and Cratoneuron filicinum, and in pea (Pisum sativum) leaf discs. When wheat germ supernatant or poly(A)-rich mRNA of T. ruralis was incubated with MDA its subsequent activity in a cell-free protein-synthesizing system was reduced. When MDA was added directly to the in vitro protein-synthesizing mixture containing moss polyribosomes, the inhibition of amino acid incorporation was small. However, when simultaneous lipid peroxidation was allowed to occur along with in vitro protein synthesis there was a strong inhibition of amino acid incorporation and MDA accumulated in the reaction mixture indicating that products of lipid peroxidation other than, and apparently more toxic than, MDA were involved. It was concluded that lipid peroxidation inhibits protein synthesis probably by releasing toxic products which may react with and inactivate some components of the protein-synthesizing complex.  相似文献   

20.
The present study evaluated the effect of five different curcuminoids, CURI, CURII, CURIII, a mixture of the three and a synthetic, curcumin–boron–oxalic acid complex, on Anabas testudineus hepatocyte lipid peroxidation after 30–60 min of incubation. The results showed that curcumin had a protective role as a strong antioxidant in teleosts. All the curcuminoids decreased the peroxidation products formed, with or without stimulating the antioxidant enzyme pathway. This suggests a direct reactive oxygen‐species scavenging ability of curcuminoids. Their antioxidant effects appear to be time and dose‐dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号