首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了实现增强型绿色荧光蛋白基因 (egfp) 在生防真菌淡紫拟青霉9410菌株中的转化,借助中间质粒pcDNA3.1(-) 构建nptⅡ-egfp融合基因的表达载体pUPNGT,然后采用根癌农杆菌介导的转化法将egfp基因转化到淡紫拟青霉9410菌株中。PCR检测和Southern blotting分析结果表明,egfp基因以单拷贝形式整合到淡紫拟青霉9410的基因组中。荧光显微镜观察结果显示,转化子在488 nm下能产生绿色荧光。这些结果说明egfp基因已成功转化至淡紫拟青霉9410菌株并获得表达。这些工作可为淡紫拟青霉在不同条件下的防效评价、环境安全评价等提供新的途径和方法。  相似文献   

2.
Green fluorescent protein (GFP) as a marker during pollen development   总被引:5,自引:0,他引:5  
The transient expression of three mutant forms of green fluorescent protein (GFP) genes, GFP4, GFP5ER, and GFP4S65C, under several constitutive and pollenspecific promoters throughout pollen development in Nicotianatabacum, thaliana and Antirrhinummajus is described. Immature pollen of tobacco, Arabidopsis and snapdragon, isolated at different developmental stages, were bombarded with plasmids containing the GFP and cultured in vitro for several days until maturity. The expression of GFP was monitored every day during in vitro maturation, germination and pollination, as well as after in situ pollination. The expression pattern of each construct was compared in parallel experiments to that of ßglucuronidase (GUS) constructs expressed by the same promoters. The results show that the expression level of all three GFP mutant forms was dependent on the strength of the promoter used. The strongest promoter was the DC3 promoter, and no notable differences in the intensity and brightness of all three versions of GFP were observed. GFPexpressing pollen from tobacco and snapdragon developed in vitro for several days until maturity and germinated in vitro as well as on the surface of stigmata, strongly suggesting that all three GFPs are not toxic for the development of functional pollen. Furthermore, stably transformed tobacco plants expressing GFP under the control of the strong pollenexpressed DC3 and LAT52 promoters were not impaired in reproductive function, confirming that GFP can be used as a nondestructive marker for plant reproductive biology and development.  相似文献   

3.
Green fluorescent protein as a marker in transgenic mice   总被引:8,自引:0,他引:8  
Green fluorescent protein (GFP) found in Aequorea victoria absorbs blue light and emits green fluorescence without exogenous substrates or co-factors. We studied the possibility of using the GFP as a marker in mammals. Transgenic mice were produced using the GFP coding sequence, ligated with the chicken beta-actin promoter. Green fluorescence was observed in muscle, pancreas, kidney, heart and other organs in all the three transgenic mouse lines. Detection of the transgenic mouse was possible by observing a tail or fingers of new born pups under a fluorescent microscope. The marker also enabled us to detect localized expression of the transgene in intact tissues without preliminary steps. It was also demonstrated that the GFP expression could be quantified by measuring the fluorescence in tissue extracts.  相似文献   

4.
Green fluorescent protein as a visual marker for wheat transformation   总被引:12,自引:0,他引:12  
M. C. Jordan 《Plant cell reports》2000,19(11):1069-1075
 Wheat (Triticum aestivum L.) transformation via particle bombardment is now established in many laboratories, but transformation efficiencies are still largely low and the highest efficiencies can only be obtained with certain genotypes. For rapid optimization and improvement of wheat transformation protocols, a non-destructive marker which permits early detection of transformed cells is needed. We have assessed the ability of a modified version of the Aequorea victoria green fluorescent protein (GFP) to act as a marker for detecting transformed cells and tissues of wheat. Multicellular clusters emitting green fluorescence were observed 14 days after particle bombardment with a sGFPS65T gene construct, and gfp-expressing shoots (often with expressing roots) could be observed as early as 21 days after bombardment. These shoots can be removed from the callus and grown further until they are ready to transfer to soil. Transgenic wheat plants could be selected on the basis of gfp expression alone although the inclusion of antibiotic resistance as a selectable marker could improve the efficiency. Using sgfpS65T as a marker gene in an experiment comparing bombardment parameters allowed the rapid identification of variables that could be targeted for optimization. Received: 29 March 2000 / Accepted: 29 March 2000  相似文献   

5.
The green fluorescent protein gene (gfp) was introduced into a p-nitrophenol-metabolizing strain of Moraxella sp. by chromosomal integration. The gfp-marked transformants, designated Moraxella sp. strains G21 and G25, exhibited green fluorescence under UV light. Molecular characterization by PCR and Southern hybridization showed the presence of gfp in both transformants. Both transformants and the parent strain degraded 720 μM of p-nitrophenol with nitrite release within 4 h after inoculation in minimal medium supplemented with yeast extract. Transformants degraded up to 1440 μM p-nitrophenol and mineralized about 60% of 720 μM p-nitrophenol, both in broth and in soil, to the same extent as the parent strain. Insertion of gfp did not adversely affect the expression of p-nitrophenol-degrading genes in the transformants. Survival studies indicated that individual green fluorescent colonies of transformants can be detected up to 2 weeks after inoculation in soil. These marked strains could be of value in studies on microbial survival in the environment.  相似文献   

6.
Murine melanoma cells B16(F10) were stably transfected with a plasmid containing GFP gene linked to rat stress-inducible hsp70.1 gene promoter. Transfected cells show in vitro variable basal levels of fluorescence depending on stress response induced at physiological temperature by growth conditions. Lack of manipulations except medium change resulted in reduction of cellular fluorescence. GFP expression in experimental murine tumors dropped to levels undetectable at physiological temperature. Heat shock induced significant fluorescence of tumor cells both in vitro and in vivo. GFP protein could be a useful marker for studies of mammalian hsp70i gene promoters.  相似文献   

7.
Green fluorescent protein (GFP) is autofluorescent. This property has made GFP useful in monitoring in vivo activities such as gene expression and protein localization. We find that GFP can be used in vitro to reveal and characterize protein-protein interactions. The interaction between the S-peptide and S-protein fragments of ribonuclease A was chosen as a model system. GFP-tagged S-peptide was produced, and the interaction of this fusion protein with S-protein was analyzed by two distinct methods: fluorescence gel retardation and fluorescence polarization. The fluorescence gel retardation assay is a rapid method to demonstrate the existence of a protein-protein interaction and to estimate the dissociation constant (Kd) of the resulting complex. The fluorescence polarization assay is an accurate method to evaluate Kd in a specified homogeneous solution and can be adapted for the high-throughput screening of protein or peptide libraries. These two methods are powerful new tools to probe protein-protein interactions.  相似文献   

8.
 The green fluorescent protein (GFP) from Aequorea victoria has been introduced into three different citrus genotypes [Citrus aurantium L., C. aurantifolia (Christm.) Swing. and C. sinensis L. Osbeck×Poncirus trifoliata (L.) Raf.] which are considered recalcitrant to transformation, mainly due to low transformation frequencies and to the regeneration of escape shoots at high frequencies from the Agrobacterium-inoculated explants. High-level GFP expression was detected in transgenic cells, tissues and plants. Using GFP as a vital marker has allowed us to localize the sites of transgene expression in specific cells, always occurring in callus tissue formed from the cambium of the cut ends of explants. Whereas green fluorescent shoots regenerated in all cases from this callus, most escapes regenerated directly from explants with almost no callus formation. Thus, development of callus from cambium is a prerequisite for citrus transformation. Furthermore, in vivo monitoring of GFP expression permitted a rapid and easy discrimination of transgenic and escape shoots. The selection of transgenic shoots could be easily favored by eliminating the escapes and/or by performing shoot-tip grafting of the transgenic buds soon after their origin. GFP-expressing shoots have also been observed in citrus explants co-cultivated with Agrobacterium but cultured in a medium without the selective agent kanamycin. This opens the possibility to rescue the transgenic sectors and to regenerate transgenic plants without using selectable marker genes conferring antibiotic or herbicide resistance, which is currently a topic of much discussion for the commercialization of transgenic plants. Received: 28 October 1998 / Accepted: 28 November 1998  相似文献   

9.
Heterobasidion annosum causes root and butt-rot in trees and is the most serious forest pathogen in the northern hemisphere. We developed a rapid and simple Agrobacterium-mediated method of gene delivery into H. annosum to be used in functional studies of candidate genes and for visualization of mycelial interactions. Heterobasidion annosum TC 32-1 was cocultivated at pH 5.6 and 20 degrees C in Hagems medium with Agrobacterium tumefaciens C58 carrying plasmids with hygromycin B resistance as the selectable marker and green fluorescent protein as a visual marker. We obtained 18 mitotically stable transformed isolates showing green fluorescence protein activity.  相似文献   

10.
Chemical-based selection for plant transformation is associated with a number of real and perceived problems that might be avoided through visual selection. We have used green fluorescent protein (GFP), as a visual selectable marker to produce transformed papaya (Carica papaya) plants following microprojectile bombardment of embryogenic callus. GFP selection reduced the selection time from 3 months on a geneticin (G418) antibiotic-containing medium to 3–4 weeks. Moreover, GFP selection increased the number of transformed papaya plants by five-to eightfold compared to selection in the presence of antibiotics. Overall, the use of GFP for selecting transgenic papaya lines improved our throughput for transformation by 15- to 24-fold while avoiding the drawbacks associated with the use of antibiotic resistance-based selection markers.Abbreviations BA: Benzyladenine - 2, 4-D: 2,4-Dichlorophenoxyacetic acid - GFP: Green fluorescent protein - IBA: Indole-3-butyric acid - NAA: -Naphthaleneacetic acid - MS: Murashige and Skoog plant culture mediumCommunicated by R.J. Rose  相似文献   

11.
果实软腐病是猕猴桃贮藏期间最严重的真菌病害,猕猴桃间座壳Diaporthe actinidiae是该病检出率最高且致病力最强的病原菌.该病菌从花前期开始侵染,至果实贮藏期才表现症状,侵染至发病周期较长,可借助荧光标记对其侵染过程进行研究.本研究采用PEG介导原生质体转化的技术,运用携带GFP及潮霉素抗性基因的双元载体p...  相似文献   

12.
绿色荧光蛋白作为分子标记物在微生物学中的应用   总被引:5,自引:0,他引:5  
荧光染料在微生物学中的应用受到广泛的关注。近年来 ,来源于发光性生物的荧光蛋白进一步丰富了微生物学的研究手段。其中绿色荧光蛋白 (Greenfluorescentprotein ,GFP ,来源于水母 )具有独特的应用价值。在活体研究中 ,GFP相对于其它报告蛋白 (如 β 半乳糖苷酶 )在原位、实时的微生物生理生化研究中有很多优越性。对GFP作为分子标记物在微生物学中的应用进行回顾 ,对GFP在微生物与宿主相互作用、生物膜(biofilm)、生物降解、细菌与原生动物相互作用、基因转导、基因表达、蛋白质定位以及生物传感器等领域的应用进行讨论 ,并扼要介绍了一些应用于荧光观察和定量分析的方法。  相似文献   

13.
In this study, we examine the use of green fluorescent protein (GFP) for monitoring a hexokinase (HXK)-GFP fusion protein in Saccharomyces cerevisiae for various events including expression, degradation, purification, and localization. The fusion, HXK-EK-GFP-6 x His, was constructed where the histidine tag (6 x His) would allow for convenient affinity purification, and the enterokinase (EK) cleavage site would be used for separation of HXK from GFP after affinity purification. Our results showed that both HXK and GFP remained active in the fusion and, more importantly, that there was a linear correlation between HXK activity and GFP fluorescence. Enterokinase cleavage studies revealed that both GFP fluorescence intensity and HXK activity remained unchanged after separation of the fusion proteins, which indicated that fusion of GFP did not cause structural alteration of HXK and thus did not affect the enzymatic activity of HXK. We also found that degradation of the fusion protein occurred, and that degradation was limited to HXK with GFP remaining intact in the fusion. Confocal microscopy studies showed that while GFP was distributed evenly in the yeast cytosol, HXK-GFP fusion followed the correct localization of HXK, which resulted in a di-localization of both cytosol and the nucleus. GFP proved to be a useful fusion partner that may lead to the possibility of integrating the bioprocesses by quantitatively following the entire process visually.  相似文献   

14.
Summary Development of new selectable markers is needed to increase the efficiency and flexibility of plant transformation, and to overcome drawbacks sometimes associated with use of existing markers. A useful alternative to chemical-based selection systems would be a system using visual screening to obtain transgenic lines. Investigations were carried out to determine if the green fluorescent protein (gfp) gene could be utilized alone as a visual screenable marker to produce stably transformed, fertile oat plants. Twelve experiments were conducted in which gfp-based selection was utilized to obtain routinely stable transgenic lines in oat. A synthetic gfp gene under the control of the maize ubiquitin promoter was delivered into embryogenic oat callus via microprojectile bombardment. Cell clusters (1–3 mm) expressing gfp were visually identified using epifluorescence microscopy and physically isolated approximately 3 wk post-bombardment. Fertile, gfp-expressing T0 plants were regenerated from 78% of the glowing cell sectors placed on regeneration medium. T0 plants from 55% of the events produced gfp-expressing progeny in a 3∶1 Mendelian ratio. Southern blot and PCR analysis confirmed transgene integration and transmission to progeny. Expression of gfp did not reduce plant growth or fertility. Transgene copy number and integration patterns were similar to those in transgenic plants derived from chemical-based selection systems. The mean transformation frequency, based on fertile events obtained per bombarded plate, was 1.8%. Over 180 independent transgenic oat lines were produced, to date, using only visual screening for expression of gfp, demonstrating efficiency and repeatability of the selection system. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the University of Wisconsin or the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

15.
Pathogenic development ofUstilago maydis, the causative agent of corn smut disease, is a multistep process. Compatible yeast-like cells fuse and this generates the infectious dikaryon which grows filamentously. Having entered the plant the dikaryon induces tumors in its host in which massive proliferation of fungal material, karyogamy and spore formation occur. In order to follow fungal development from the initial steps to the final stage we have expressed the green fluorescent protein (GFP) fromAequorea victoria as a vital marker inU. maydis and demonstrate that GFP-tagged strains can be used to study host-pathogen interactions in vivo.  相似文献   

16.
17.
In a variety of organisms, adult gonads contain several specialized somatic cells that regulate and support the development of germline cells. In stony corals, the characteristics and functions of gonadal somatic cells remain largely unknown. No molecular markers are currently available that allow for the identification and enrichment of gonadal somatic cells in corals. Here, we showed that the testicular somatic cells of a stony coral, Euphyllia ancora, express an endogenous green fluorescent protein (GFP). Fluorescence microscopy showed that, in contrast to the endogenous expression of the red fluorescent protein of E. ancora ovaries that we have previously reported, the testes displayed a distinct green fluorescence. Molecular identification and spectrum characterization demonstrated that E. ancora testes expressed a GFP (named EaGFP) that is a homolog of the GFP from the jellyfish Aequorea victoria and that possesses an excitation maximum of 506 nm and an emission maximum of 514 nm. Immunohistochemical analyses revealed that the testicular somatic cells, but not the germ cells, expressed EaGFP. EaGFP was enclosed within one or a few granules in the cytoplasm of testicular somatic cells, and the granule number decreased as spermatogenesis proceeded. We also showed that testicular somatic cells could be enriched by using endogenous GFP as an indicator. The present study not only revealed one of the unique cellular characteristics of coral testicular cells but also established a technical basis for more in‐depth investigations of the function of testicular somatic cells in spermatogenesis in future studies.  相似文献   

18.
A coral fluorescent protein from Trachyphyllia geoffroyi, Kaede, possesses a tripeptide of His62-Tyr63-Gly64, which forms a chromophore with green fluorescence. This chromophore's fluorescence turns red following UV light irradiation. We have previously shown that such photoconversion is achieved by a formal beta-elimination reaction, which results in a cleavage of the peptide bond found between the amide nitrogen and the alpha-carbon at His62. However, the stereochemical arrangement of the chromophore and the precise structural basis for this reaction mechanism previously remained unknown. Here, we report the crystal structures of the green and red form of Kaede at 1.4 A and 1.6 A resolutions, respectively. Our structures depict the cleaved peptide bond in the red form. The chromophore conformations both in the green and red forms are similar, except a well-defined water molecule in the proximity of the His62 imidazole ring in the green form. We propose a molecular mechanism for green-to-red photoconversion, which is assisted by the water molecule.  相似文献   

19.
Transformation of plants is a popular tool for modifying various desirable traits. Marker genes, like those encoding for bacterial β-glucuronidase (GUS), firefly luciferase (LUC) or jellyfish green fluorescent protein (GFP) have been shown to be very useful for establishing of efficient transformation protocols. Due to favourable properties such as no need of exogenous substrates and easy visualization, GFP has been found to be superior in to other markers in many cases. However, the use of GFP fluorescence is associated with some obstacles, mostly related to the diminishing of green fluorescence in older tissues, variation in fluorescence levels among different tissues and organs, and occasional interference with other fluorescing compounds in plants. This paper briefly summarizes basic GFP properties and applications, and describes in more detail the contribution of GFP to the establishment, evaluation and improvement of transformation procedures for plants. Moreover, features and possible obstacles associated with monitoring GFP fluorescence are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号