首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The physiology of p16INK4A-mediated G1 proliferative arrest   总被引:11,自引:0,他引:11  
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases (CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors. Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest.  相似文献   

2.
Numerous changes in gene expression are known to occur during replicative senescence, including changes in genes involved in the cell cycle control. In the present study, we have found a severe impairment in the activation of Cdk2 and Cdk4 in response to mitogens in senescent human fibroblasts and determined the molecular basis for this. Although Cdk4 protein was constitutively expressed in senescent cells at the same level as in early-passage young cells, it was found to be complexed with a distinct set of Cdk inhibitors. Cdk4 derived from early passage quiescent cells was effectively activated by incubation with cyclin D1 and Cdk-activating kinase (CAK) in vitro, whereas Cdk4 from senescent cells was not. Cdk2 protein was dramatically decreased in senescent cells and complexed primarily with cyclin D1 and p21. This cyclin D1-bound Cdk2 was not activated by CAK either in vivo or in vitro, implicating cyclin D1 as an inhibitor of Cdk2 activation. Thus, one of the underlying molecular events involved in replicative senescence is the impaired activation of Cdk4 and Cdk2 due to increased binding of p16 to Cdk4 and increased association of Cdk2 with cyclin D1 and p21.  相似文献   

3.
Identification of target genes of the p16INK4A-pRB-E2F pathway   总被引:9,自引:0,他引:9  
  相似文献   

4.
The cyclin‐dependent kinase (Cdk) inhibitor p16Ink4a (p16) is a canonical mediator of cellular senescence and accumulates in aging tissues, where it constrains proliferation of some progenitor cells. However, whether p16 induction in tissues is sufficient to inhibit cell proliferation, mediate senescence, and/or impose aging features has remained unclear. To address these issues, we generated transgenic mice that permit conditional p16 expression. Broad induction at weaning inhibited proliferation of intestinal transit‐amplifying and Lgr5+ stem cells and rapidly imposed features of aging, including hair loss, skin wrinkling, reduced body weight and subcutaneous fat, an increased myeloid fraction in peripheral blood, poor dentition, and cataracts. Aging features were observed with multiple combinations of p16 transgenes and transactivators and were largely abrogated by a germline Cdk4 R24C mutation, confirming that they reflect Cdk inhibition. Senescence markers were not found, and de‐induction of p16, even after weeks of sustained expression, allowed rapid recovery of intestinal cell proliferation and reversal of aging features in most mice. These results suggest that p16‐mediated inhibition of Cdk activity is sufficient to inhibit cell proliferation and impose aging features in somatic tissues of mammals and that at least some of these aging features are reversible.  相似文献   

5.
6.
7.
Nucleolar protein p40/EBP2 is a proliferation-associated antigen that interacts with Epstein-Barr virus nuclear antigen 1 (EBNA1) to maintain the Epstein-Barr virus (EBV) episomes. The yeast p40/EBP2 functions in the processing of 27S-A into 27S-B ribosomal RNA. The present study reports high evolutionary conservation of the cDNA-derived amino acid sequences of p40/EBP2 from frog, chicken, pig, rat, mouse, bovine, and human. p40/EBP2 is ubiquitously expressed in human tissues. It is highly expressed in myelogenous leukemia K-562 compared to other cell lines tested. The human p40/EBP2 gene is located in chromosome 1 with nine exons and eight introns. The minimal promoter region resides 300 nucleotides upstream of a putative ATG initiation codon preceded by a pyrimidine-rich region. These two regions contain eight Sp1 and four c-Ets-1 putative binding sites. Analysis of the p40/EBP2 gene and its promoter region will facilitate studies on the regulation of its expression in EBV-infected and noninfected cells.  相似文献   

8.
9.
In response to DNA damage, a cell can be forced to permanently exit the cell cycle and become senescent. Senescence provides an early barrier against tumor development by preventing proliferation of cells with damaged DNA. By studying single cells, we show that Cdk activity persists after DNA damage until terminal cell cycle exit. This low level of Cdk activity not only allows cell cycle progression, but also promotes cell cycle exit at a decision point in G2 phase. We find that residual Cdk1/2 activity is required for efficient p21 production, allowing for nuclear sequestration of Cyclin B1, subsequent APC/CCdh1‐dependent degradation of mitotic inducers and induction of senescence. We suggest that the same activity that triggers mitosis in an unperturbed cell cycle enforces senescence in the presence of DNA damage, ensuring a robust response when most needed.  相似文献   

10.
GRIM-19 (Gene associated with Retinoid-IFN-induced Mortality-19) was originally isolated as a growth suppressor in a genome-wide knockdown screen with antisense libraries. Like classical tumor suppressors, mutations, and/or loss of GRIM-19 expression occur in primary human tumors; and it is inactivated by viral gene products. Our search for potential GRIM-19-binding proteins, using mass spectrometry, that permit its antitumor actions led to the inhibitor of cyclin-dependent kinase 4, CDKN2A. The GRIM-19/CDKN2A synergistically suppressed cell cycle progression via inhibiting E2F1-driven gene expression. The N terminus of GRIM-19 and the fourth ankyrin repeat of CDKN2A are crucial for their interaction. The biological relevance of these interactions is underscored by observations that GRIM-19 promotes the inhibitory effect of CDKN2A on CDK4; and mutations from primary tumors disrupt its ability to interact with GRIM-19 and suppress E2F1-driven gene expression.  相似文献   

11.
12.
13.
In response to oncogenic signals, cells have developed safe mechanisms to avoid transformation through activation of a senescence program. Upon v-H-Ras overexpression, normal cells undergo senescence through several cellular processes, including activation of the ERK1/2 pathway. Interestingly, the E1a gene from adenovirus 5 has been shown to rescue cells from senescence by a yet unknown mechanism. We investigated whether E1a was able to interfere with the ERK1/2 signaling pathway to rescue cells from v-H-Ras-mediated senescence. Our results show that, E1a overexpression blocks v-H-Ras-mediated ERK1/2 activation by two different and concomitant mechanisms. E1a through its ability to interfere with PKB/Akt activation induces the down-regulation of the PEA15 protein, an ERK1/2 nuclear export factor, leading to nuclear accumulation of ERK1/2. In addition to this, we show that E1a increases the expression of the inducible ERK1/2 nuclear phosphatases (MAPK phosphatases) MKP1/DUSP1 and DUSP5, which leads to ERK1/2 dephosphorylation. We confirmed our observations in the human normal diploid fibroblasts IMR90, in which we could also show that an E1a mutant, unable to bind retinoblastoma protein (pRb), cannot rescue cells from v-H-Ras-induced senescence. In conclusion, E1a is able to rescue from Ras-induced senescence by affecting ERK1/2 localization and phosphorylation.  相似文献   

14.
15.
We have previously reported that certain tyrphostins which block EGF-R phosphorylation in cell-free systems fail to do so in intact cells. Nevertheless, we found that this family of tyrphostins inhibits both EGF- and calf serum-induced cell growth and DNA synthesis [Osherov, N.A., Gazit, C., Gilon, and Levitzki, A. (1993). Selective inhibition of the EGF and HER2/Neu receptors by Tyrphostins.J. Biol. Chem.268, 11134–11142.] Now we show that these tyrphostins exert their inhibitory activity even when added at a time when the cells have already passed their restriction point and receptor activation is no longer necessary. AG555 and AG556 arrest 85% of the cells at late G1, whereas AG490 and AG494 cause cells to arrest at late G1 and during S phase. No arrest occurs during G2 or M phase. Further analysis revealed that these tyrphostins act by inhibiting the activation of the enzyme Cdk2 without affecting its levels or its intrinsic kinase activity. Furthermore, they do not alter the association of Cdk2 to cyclin E or cyclin A or to the inhibitory proteins p21 and p27. These compounds also have no effect on the activating phosphorylation of Cdk2 by Cdk2 activating kinase (CAK) and no effect on the catalytic domain of cdc25 phosphatase. These compounds lead to the accumulation of phosphorylated Cdk2 on tyrosine 15 which is most probably the cause for its inhibition leading to cell cycle arrest at G1/S. A structure–activity relationship study defines a very precise pharmacophore, suggesting a unique molecular target not yet identified and which is most probably involved in the regulation of the tyrosine-phosphorylated state of Cdk2. These compounds represent a new class of cell proliferation blockers whose target is Cdk2 activation.  相似文献   

16.
17.
18.
The human herpesvirus Epstein-Barr virus (EBV) establishes latency and promotes the long-term survival of its host B cell by targeting the molecular machinery controlling cell fate decisions. The cellular antiapoptotic bfl-1 gene confers protection from apoptosis under conditions of growth factor deprivation when expressed ectopically in an EBV-negative Burkitt's lymphoma-derived cell line (B. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000), and the EBV latent membrane protein 1 (LMP1) and its cellular functional homologue CD40 can both drive bfl-1 via an NF-kappaB-dependent enhancer element in the bfl-1 promoter (B. N. D'Souza, L. C. Edelstein, P. M. Pegman, S. M. Smith, S. T. Loughran, A. Clarke, A. Mehl, M. Rowe, C. Gélinas, and D. Walls, J. Virol. 78:1800-1816, 2004). Here we show that the EBV nuclear antigen 2 (EBNA2) also upregulates bfl-1. EBNA2 trans-activation of bfl-1 requires CBF1 (or RBP-J kappa), a nuclear component of the Notch signaling pathway, and there is an essential role for a core consensus CBF1-binding site on the bfl-1 promoter. trans-activation is dependent on the EBNA2-CBF1 interaction, is modulated by other EBV gene products known to interact with the CBF1 corepressor complex, and does not involve activation of NF-kappaB. bfl-1 expression is induced and maintained at high levels by the EBV growth program in a lymphoblastoid cell line, and withdrawal of either EBNA2 or LMP1 does not lead to a reduction in bfl-1 mRNA levels in this context, whereas the simultaneous loss of both EBV proteins results in a major decrease in bfl-1 expression. These findings are relevant to our understanding of EBV persistence, its role in malignant disease, and the B-cell developmental process.  相似文献   

19.
20.
The error‐free DNA damage tolerance (DDT) pathway is crucial for replication completion and genome integrity. Mechanistically, this process is driven by a switch of templates accompanied by sister chromatid junction (SCJ) formation. Here, we asked if DDT intermediate processing is temporarily regulated, and what impact such regulation may have on genome stability. We find that persistent DDT recombination intermediates are largely resolved before anaphase through a G2/M damage checkpoint‐independent, but Cdk1/Cdc5‐dependent pathway that proceeds via a previously described Mus81‐Mms4‐activating phosphorylation. The Sgs1‐Top3‐ and Mus81‐Mms4‐dependent resolution pathways occupy different temporal windows in relation to replication, with the Mus81‐Mms4 pathway being restricted to late G2/M. Premature activation of the Cdk1/Cdc5/Mus81 pathway, achieved here with phosphomimetic Mms4 variants as well as in S‐phase checkpoint‐deficient genetic backgrounds, induces crossover‐associated chromosome translocations and precocious processing of damage‐bypass SCJ intermediates. Taken together, our results underscore the importance of uncoupling error‐free versus erroneous recombination intermediate processing pathways during replication, and establish a new paradigm for the role of the DNA damage response in regulating genome integrity by controlling crossover timing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号