首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

2.
Oral administration of sodium pyrithione (NaP) causes hindlimb weakness in rodents, but not in primates. Previous work using Aplysia neurons has demonstrated that NaP produces a persistent influx of Ca2+ ions across the plasma membrane. To determine whether this also occurs in mammalian neurons and whether this could underlie the inter-species difference between rodents and primates, we have tested the effects of NaP on intracellular Ca2+ levels ([Ca2+]i) in rat and monkey motor neurons in vitro. Motor neurons present in spinal cord slices from rhesus monkey embryos (E37 and 56) and from rat E16 were dissected and cultured on glass coverslips. Following 2 weeks (rhesus) or 2-3 days (rat) in culture, neurons were loaded with fura-PE3/AM, and examined for [Ca2+]i changes in response to NaP. Rhesus motor neurons were identified by immunostaining for Islet-1 (MN specific antigen) and neuron specific enolase (NSE). Motor neurons from both species exhibited dose-dependent NaP-evoked increases in [Ca2+]i However, the dose-response curve for the Rhesus motor neurons was significantly shifted to the right of the rat dose-response curve, whereas the overall amplitude of the Ca2+ rise was similar in both species. As shown previously for the Aplysia neurons, the action of NaP is attenuated by SKF 96365, an inhibitor of store-operated calcium entry. In contrast the action of NaP is unaffected by nifedipine and tetrodotoxin, blockers of voltage-dependent Ca2+ and Na+ channels, respectively, or by ouabain, an inhibitor of the plasma membrane Na+/K+ ATPase. Our results indicate that the NaP-induced increase in [Ca2+]i is conserved across species and suggest that the toxicological sensitivity of rodent over primate to pyrithione could be due to the enhanced sensitivity of rodent motor neurons to NaP-evoked intracellular Ca2+ elevation.  相似文献   

3.
Elevation of cytosolic level of Ca(2+) was measured by spatial screening of freshly isolated dorsal root ganglion neurons loaded with Fura-2AM after subjecting them to a moderate hypoxic solution (pO(2)=10-40 mmHg). Short exposure of neurons to hypoxia resulted in a reversible elevation of intracellular Ca(2+) to about 120% in the cell center and to 80% in the cell periphery. Such elevation could be almost completely eliminated by removal of Ca(2+) or Na(+) from external medium or application of nifedipine, an L-type calcium channel blocker. Remarkable antihypoxic efficiency (58%) was achieved by preapplication of mitochondrial protonophore CCCP. A conclusion is made that in sensory neurons the hypoxia-induced elevation of cytosolic Ca(2+) is induced by combined changes of function in three cell substructures: voltage-operated L-type Ca(2+) and Na(+) channels and Ca(2+) accumulation by mitochondria. Mitochondria are important for spatial difference in the hypoxia-induced Ca(2+) elevation due to their specific location in these neurons.  相似文献   

4.
5.
The lipid diacylglycerol (DAG) analogue 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) was used to verify the existence of DAG‐sensitive channels in cortical neurons dissociated from E13 mouse embryos. Calcium imaging experiments showed that OAG increased the cytosolic concentration of Ca2+ ([Ca2+]i) in nearly 35% of the KCl‐responsive cells. These Ca2+ responses disappeared in a Ca2+‐free medium supplemented with EGTA. Mn2+ quench experiments showed that OAG activated Ca2+‐conducting channels that were also permeant to Ba2+. The OAG‐induced Ca2+ responses were unaffected by nifedipine or omega‐conotoxin GVIA (Sigma‐Aldrich, Saint‐Quentin Fallavier, France) but blocked by 1‐[β‐(3‐(4‐Methoxyphenyl)propoxy)‐4‐methoxyphenethyl]‐1H‐imidazole hydrochloride (SKF)‐96365 and Gd3+. Replacing Na+ ions with N‐methyl‐d ‐glucamine diminished the amplitude of the OAG‐induced Ca2+ responses showing that the Ca2+ entry was mediated via Na+‐dependent and Na+‐independent mechanisms. Experiments carried out with the fluorescent Na+ indicator CoroNa Green showed that OAG elevated [Na+]i. Like OAG, the DAG lipase inhibitor RHC80267 increased [Ca2+]i but not the protein kinase C activator phorbol 12‐myristate 13‐acetate. Moreover, the OAG‐induced Ca2+ responses were not regulated by protein kinase C activation or inhibition but they were augmented by flufenamic acid which increases currents through C‐type transient receptor potential protein family (TRPC) 6 channels. In addition, application of hyperforin, a specific activator of TRPC6 channels, elevated [Ca2+]i. Whole‐cell patch‐clamp recordings showed that hyperforin activated non‐selective cation channels. They were blocked by SKF‐96365 but potentiated by flufenamic acid. Altogether, our data show the presence of hyperforin‐ and OAG‐sensitive Ca2+‐permeable channels displaying TRPC6‐like properties. This is the first report revealing the existence of second messenger‐operated channels in cortical neurons.  相似文献   

6.
Commercial solvents such as toluene are commonly used as drugs of abuse by children and adolescents. The cellular and molecular sites and mechanisms of actions of these compounds are not well studied but their effects on behavior resemble those of central nervous system depressants such as alcohol, barbiturates and benzodiazepines. In this study, the effects of toluene on voltage-sensitive calcium channels (VSCCs) were measured in pheochromocytoma cells. The KCl-induced rise in intracellular calcium as measured by calcium imaging was almost completely blocked by the dihydropyridine calcium channel antagonist nifedipine verifying that undifferentiated pheochromocytoma cells express mainly the L-type of calcium channel. Toluene (0.3–3000 μM) by itself did not affect intracellular calcium levels in resting cells but dose-dependently inhibited the KCl-induced rise in calcium. This inhibition was substantially reversed upon washout of the toluene-containing solution. KCl-dependent increases in intracellular calcium in cells differentiated with nerve growth factor (NGF) were largely insensitive to nifedipine. Toluene produced a greater inhibition of the KCl response in NGF treated cells as compared with undifferentiated cells. A similar finding was obtained when whole-cell patch-clamp-electrophysiology was used to directly monitor the effects of toluene on voltage-activated calcium currents in undifferentiated and differentiated cells. These results show that dihydropyridine sensitive and insensitive calcium channels are inhibited by toluene and may represent important sites of action for this compound.  相似文献   

7.
In Helix pomatia L. recordings have been made of 91 single neurons from the cerebral ganglia during peripheral thermal stimulation of the lip region. Temperatures ranged between 12 and 32°C. Different reactions to thermal stimulation could be observed: hyperpolarisation (n=43), depolarisation (n=9), increasing frequency of action potentials (n=10), decreasing frequency of action potentials (n=3). A number of cells did not show any changes in neuronal activity (n=26). The assumption that distinct cell clusters are responsible for the processing of thermal stimuli had to be rejected since cells responding to peripheral thermal stimulation were found in all parts of the ganglia.  相似文献   

8.
In neurons of the rat dorsal root ganglia (DRG), using a patch-clamp technique in the whole-cell configuration, we studied the characteristics of calcium channels activated by depletion of the ryanodine-sensitive calcium stores of the endoplasmic reticulum. Current-voltage (I-V) relationships of these store-operated calcium channels were obtained by subtraction of the integral I-V characteristics after application of caffeine from the integral I-V characteristics of calcium channels in the control. Currents through store-operated calcium channels could be induced by application of a series of hyperpolarization current pulses to the cell under conditions of replacement of a calcium-free solution containing caffeine by a caffeine-free solution containing 2 mM Ca2+. In this case, the following two main conditions were abserved: Voltage-operated calcium channels were inactivated, while a gradient of the electrochemical potential for calcium ions was increased, which made easier passing of these currents through store-operated calcium channels. Therefore, we found that in DRG neurons, despite the presence of great numbers of both voltage-operated and receptor-dependent calcium channels, one more mechanism underlying the entry of calcium through store-operated channels does exist. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 195–200, May–June, 2007.  相似文献   

9.
Isolated Na currents were studied in cultured chick sensory neurons using the patch clamp technique. On membrane depolarization, whole cell currents showed the typical transient and voltage-dependent time course as in nerve fibres. Na currents appeared at about-40 mV and reached maximum amplitude at around-10 mV. At low voltages (-30 to 0 mV), their turning-on was sigmoidal and inactivation developed exponentially. The ratio of inactivation time constants was found to be smaller than in squid axons and comparable to that of mammalian nodes of Ranvier. Peak conductance and steady-state inactivation were strongly voltage-dependent, with maximum slopes at-17 and-40 mV, respectively. The reversal potential was close to the Nernst equilibrium potential, indicating a high degree of ion-selectivity for the channel. Addition of 3M TTX, or replacement of Na by Choline in the external bath, abolished these currents. Internal pronase (1 mg/ml) and N-bromoacetamide (0.4 mM) made inactivation incomplete, with little effect on its rate of decay.Single Na channel currents were studied in outside-out membrane patches, at potentials between-50 and-20 mV. Their activation required large negative holding potentials (-90 mV). They were fully blocked by addition of TTX (3 M) to the external bath. At-40 mV their mean open time was about 2ms and the amplitude distribution could be fitted by a single Gaussian curve, indicating the presence of a homogeneous population of channels with a conductance of 11±2 pS. Probability of opening increased and latency to first opening decreased with increasing depolarization. Inactivation of the channel became faster with stronger depolarizations, as measured from the inactivation time course of sample averages. Internal pronase (0.1 mg/ml) produced effects on inactivation comparable to those on whole cell currents. Openings of the channel had a tendency to occur in bursts and showed little inactivation during pulses of 250 ms duration. The open lifetime of the channel at low potentials (-50,-40 mV) was only three times larger than in control patches, suggesting that Na channels in chick sensory neurons can close several times before entering an inactivating absorbing state.  相似文献   

10.
The measurements of unitary outward ion currents in unidentified neurons of the snailHelix pomatia with the patch-clamp technique in a cell-attached configuration showed the presence of several types of K+ channels. We investigated three types of K+ channels: with big (75 pS, BKC), medium (22 pS, MKC), and small (6.2 pS, SKC) unitary conductance. BKC and MKC were activated at a membrane potential of about –30 mV, whereas SKC were activated at more negative potentials, with opening probability of the latter channels significantly decreasing at potentials more positive than –30 mV. Pharmacological investigation showed that BKC and MKC channel activity disappeared after 8–10 min of cell patching with a pipette solution containing 60 mM Cs+, whereas MKC channels remained unaffected. BKC and MKC were proved to be more sensitive to TEA (20 mM), whereas SKC were selectively sensitive to 4-AP (10 mM). Cd2+ (100 µM) in the pipette solution decreased the unitary conductance of BKC channels by 55 % and that of MKC channels by about 31 %. In contrast, the unitary conductance of SKC channels was not changed by the above blocker. Bath application of 10 µM 5-HT showed that MKC were suppressed by 5-HT, whereas SKC and BKC were insensitive to this transmitter. It is supposed that BKC can be classified as big-conductance Ca2+-dependent K+ channels (KCa) or to 5-HT-sensitive K+ channels (S-type channels), while MKC correspond to intermediate-conductance KCa, and SKC channels comply well with the characteristics of A-type K+ current.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 250–259, November–December, 1996.  相似文献   

11.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

12.
Morphological changes induced by capsaicin were studied in the serotonergic metacerebral giant neurons of the cerebral ganglia of Helix pomatia under in vitro conditions. Capsaicin at a concentration of 10-4 M caused characteristic structural alterations in the giant serotonergic neurons but did not significantly influence serotonin immunoreactivity in the neurons. At the lightmicroscopic level, the most conspiciuous structural alterations were swelling of the cell bodies, which contained a swollen pale nucleus. Under the electron microscope, the nuclei,mitochondria and the cisternae of the endoplasmic reticulum were swollen in the capsaicin-affected metacerebral giant neurons. Electron-microscopic cytochemical techniques for calcium demonstration revealed electron-dense deposits in the swollen mitochondria and in the cisternae of the endoplasmic reticulum, suggesting an increased Ca2+ influx. The serotonergic metacerebral giant neurons could be labelled by cobalt (1 mM) in the presence of capsaicin (10-4 M) suggesting that capsaicin opens the cation chanels of the capsaicin-sensitive neuronal membrane. The morphological and cytochemical alterations induced by capsaicin in the serotonergic metacerebral giant neurons of Helix pomatia closely resemble those induced in sensory neurons of mammalian dorsal root ganglion.This work was supported by OTKA grants No.: 2477, T016861, T017127 and ETT 587/93  相似文献   

13.
The olfactory epithelium has the ability to respond to a large number of volatile compounds of small molecular weight. Ultimately, such a property lies on a specialized type of neuron, the olfactory receptor cell. In the presence of odorants, the olfactory receptor neuron responds with action potentials whose frequency depends on odorant concentration. The primary events in the process of olfactory transduction are thought to occur at the cilia of olfactory receptor neurons and involve the binding of odorants to receptor molecules followed by the opening of ion channels. A crucial step in understanding olfactory transduction requires identifying the mechanisms that regulate the electrical activity of olfactory cells. In the last couple of years, patch-clamp recording from isolated olfactory cells and reconstitution of olfactory membranes in planar lipid bilayers have begun to shed light on some of these mechanisms. Although the information emerging from such studies is still preliminary, there are already well-defined hypotheses on the molecular events that might underlie the primary events in olfactory transduction. Currently, attention is being focused on the notions that second messengers might be involved in the activation of ion channels in olfactory cilia, and that odorant binding to a receptor molecule might lead directly to the gating of ion channels in chemosensory olfactory membranes. The coming years promise to be exciting ones in the field of olfactory transduction. We have now the necessary tools to be able to confront hypotheses and experimental facts.  相似文献   

14.
Summary There are species of hydrozoans, Eutonina victoria, Mitrocomella polydiademata, and Phialidium gregarium whose eggs contain calcium-specific photoproteins. These cytoplasmic photoproteins are synthesized during oogenesis. During the cleavage stages of embryogenesis they are distributed to all of the cells of the developing planula larva. The amount of photoprotein slowly declines during the development of the planula larva, and markedly declines when the planula undergoes metamorphosis to become a polyp.Oocytes, unfertilized eggs, and fertilized eggs prior to the first cleavage do not produce light when treated with KCl. The ability to respond to KCl appears about the time of first cleavage, and is correlated with the appearance of active membrane responses. Both the KCl response and the action potentials will occur in sodium-free sea water, and both are inhibited by calcium channel blockers. These and other experiments suggest that voltage sensitive calcium channels first become active at about the time of first cleavage. These channels also appear on the same schedule in both unfertilized eggs and in enucleated egg fragments, which have been artificially activated with A23187.Developing planulae produce few or no spontaneous light responses before gastrulation. Later the frequency and magnitude of spontaneous light production increases presumably due to an increasing frequency and magnitude of calcium transients. Both the natural trigger of metamorphosis (bacteria) and an artificial trigger (CsCl) cause a conspicuous series of calcium transients. When these transients are inhibited by calcium channel blockers, metamorphosis is also inhibited.  相似文献   

15.
《Cell calcium》2016,59(6):617-627
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such ‘acidic calcium stores’ affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed “acidic store-operated calcium entry (aSOCE)”. aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.  相似文献   

16.
  • 1.1. The mechanism of generation of membrane potential (MP) oscillations was studied in identified bursting neurons from the snail Helix pomatia.
  • 2.2. Long-lasting stimulation of an identified peptidergic interneuron produced a persistent bursting activity in a non-active burster.
  • 3.3. External application of calcium channel blockers (1 mM Cd2+ or 5 mM La2+) resulted in a transient increase in the slow-wave amplitude and subsequent prevention of pacemaker activity generation in bursting neurons. Application of these blockers together with endogenous neuropeptide initiating bursting activity generation, increased MP wave amplitude without prevention of bursting activity generation.
  • 4.4. Replacement of all NaCl in normal Ringer's solution with isoosmotic CaCl2, glucose or Tris-HCl produced a reversible block of bursting activity generation. Stationary current-voltage relation (CVR) of bursting neuron membrane has a region of negative resistance (NRR) and does not intersect the potential axis in threshold region for action potential (AP) generation in normal Ringer's solution. In Na-free solution stationary CVR is linear and intersects the potential axis near — 52 mV.
  • 5.5. Novel potential- and time-dependent outward (Erev = − 58 mV) current, IB, activated by hyperpolarization was found in the bursting neuron membrane. Having achieved a maximal value, this current decayed with a time constant of about 1 sec. Hyperpolarization inactivated maximal conductance, gB, responsible for IB, and depolarization abolished inactivation of gB.
  • 6.6. Short-lasting (0.01 sec) hyperpolarization of the bursting neuron membrane by inward current pulse induced the development of prolonged hyperpolarization wave lasting up to 10 sec.
  • 7.7. These results suggest that: (a) persistent bursting activity of RPal neuron in the snail Helix pomatia is not endogenous but is due to a constant activation of peptidergic synaptic inputs of these neurons; (b) Ca2+ ions do not play a pivotal role in the ionic mechanism of MP oscillations but play a determining role in the process of secretion of a peptide initiating bursting activity by the interneuron presynaptic terminal; (c) depolarizing phase of the MP wave is due to specific properties of stationary CVR and hyperpolarization phase is due to regenerative properties of hyperpolarization-activated outward current IB. The minimal mathematical version of MP oscillations based on the experimental data is presented.
  相似文献   

17.
Parvalbumin-immunoreactive material was detected in the central nervous system of the snail, Helix pomatia. Each ganglion investigated contained parvalbumin-immunoreactive neurons. The molecular weight of Helix parvalbumin-immunoreactive material as determined by Western blots is about 40 kilodaltons. 45Ca2+ overlays showed that this protein binds Ca2+. In contrast to vertebrates, in Helix neurons parvalbuminlike material was not colocalized with the neurotransmitter gamma-aminobutyric acid (GABA).  相似文献   

18.
Summary The distribution of serotonin (5HT)-containing neurons in the central nervous system of the snail Helix pomatia has been determined in whole-mount preparations by use of immunocytochemical and in vivo 5,6-dihydroxy-tryptamine labelling. 5HT-immunoreactive neuronal somata occur in all but the buccal and pleural ganglia. Immunoreactive fibres are present throughout the central nervous system. The 5HT-immunoreactive neuronal somata characteristically appear in groups, located mainly in the cerebral, pedal, visceral and right parietal ganglia. The majority of 5HT-immunoreactive neurons is located in the pedal ganglia. Additionally a dense network of 5HT-immunoreactive varicose fibres is found in the neural sheath of the central nervous system including all the nerves and ganglia. The number and distribution of 5HT-immunoreactive neurons correlates with that demonstrated by 5,6-dihydroxytryptamine labelling method.  相似文献   

19.
Intracellular microelectrode recordings from neurons ofHelix pomatia revealed several local zones of action potential generation both on the soma and on some of the branches of the neurons. Under certain conditions the activity of individual loci of the neuron membrane was synchronized to produce a normal action potential. It is suggested that the somatic membrane of neurons is heterogeneous in structure and consists of separate loci of an electrically excitable membrane, incorporating active and latent pacemaker zones. Neurons ofH. pomatia are characterized by two types of action potential with different triggering mechanisms: one (synaptic) type is generated under the influence of the EPSP, the other (pacemaker) arises through activation of endogenous factors for the neuron (pacemaker potentials). The interaction between synaptic and pacemaker potentials during integrative activity of the neuron is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 88–94, January–February, 1973.  相似文献   

20.
Summary Activation kinetics of single high-threshold inactivating (HTI orN-type) calcium channels of cultured dorsal root ganglion cells from mouse embryos was studied using a patchclamp method. Calcium channels displayed bursting activity. The open-time histogram was single exponential with an almost potential-independent mean open time op. The closed-time histogram was multicomponent; at least three of the components were associated with the activation process. The fast exponential component with the potential-independent time constant cl f included all intraburst gaps, while two slower ones with potential-dependent time constants cl vs described shut times between bursts and between clusters of bursts. The burst length histogram was biexponential. The fast component with a relatively potential-independent time constant bur f described short, isolated channel openings while the slow component characterized real bursts with a potential-dependent mean life time. The waiting-time histogram could be fitted by a difference of two exponentials with time constants being the same as cl s and cl vs . The data obtained were described in the frame of a 4-state sequential model of calcium channel activation, in which the first two stages are formally attributed to potential-dependent transmembrane transfer of two charged gating particles accompanying the channel transitions between three closed states, and the third one to fast conformational changes in channel protein leading to the opening of the channel. The rate constants for all transitions were defined. The validity of the proposed model for both low-threshold inactivating (LTI orT-type) and high-threshold noninactivating (HTN orL-type) calcium channels is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号