首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potent diuretic and natriuretic peptide hormone atrial natriuretic factor (ANF), with vasodilatory activity also stimulates steroidogenic responsiveness in Leydig cells. The actions of ANF are mediated by its interaction with specific cell surface receptors and the membrane-bound form of guanylate cyclase represents an atrial natriuretic factor receptor (ANF-R). To understand the mechanism of ANF action in testicular steroidogenesis and to identify guanylate cyclase/ANF-R that is expressed in the Leydig cells, the primary structure of murine guanylate cyclase/ANF-R has been deduced from its cDNA sequence. A cDNA library constructed from poly(A+) RNA of murine Leydig tumor (MA-10) cell line was screened for the membrane-bound form of ANF-R/guanylate cyclase sequences by hybridization with a rat brain guanylate cyclase/ANF-R cDNA probe. The amino acid sequence deduced from the cDNA shows that murine guanylate cyclase/ANF-R cDNA consists of 1057 amino acids with 21 amino acids comprising the transmembrane domain which separates an extracellular ligand-binding domain (469 amino acid residues) and an intracellular guanylate cyclase domain (567 amino acid residues). Upon transfection of the murine guanylate cyclase/ANF-R cDNA in COS-7 cells, the expressed protein showed specific binding to 125I-ANF, stimulation of guanylate cyclase activity and production of intracellular cGMP in response to ANF. The expression of guanylate cyclase/ANF-R cDNA transfected in rat Leydig tumor cells stimulated the production of testosterone and intracellular cGMP after treatment with ANF. The results presented herein directly show that ANF can regulate the testicular steroidogenic responsiveness in addition to its known regulatory role in the control of cardiovascular homeostasis.  相似文献   

2.
S Meloche  N McNicoll  B Liu  H Ong  A De Léan 《Biochemistry》1988,27(21):8151-8158
The atrial natriuretic factor (ANF) R1 receptor from bovine adrenal zona glomerulosa was solubilized with Triton X-100 and purified 13,000-fold, to apparent homogeneity, by sequential affinity chromatography on ANF-agarose and steric exclusion high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the purified receptor preparation in the absence or presence of dithiothreitol revealed a single protein band of Mr 130,000. Affinity cross-linking of 125I-ANF to the purified receptor resulted in the labeling of the Mr 130,000 band. The purified receptor bound ANF with a specific activity of 6.8 nmol/mg of protein, corresponding to a stoichiometry of 0.9 mol of ANF bound/mol of Mr 130,000 polypeptide. Starting with 500 g of adrenal zona glomerulosa tissue, we obtained more than 500 pmol of purified receptor with an overall yield of 9%. The purified receptor showed a typical ANF-R1 pharmacological specificity similar to that of the membrane-bound receptor. The homogeneous Mr 130,000 receptor protein displayed high guanylate cyclase activity [1.4 mumol of cyclic GMP formed min-1 (mg of protein)-1] which was not stimulated by ANF. This finding supports the notion that the ANF binding and the guanylate cyclase activities are intrinsic components of the same polypeptide. Finally, the purified ANF-R1 receptor retained its sensitivity to modulation by amiloride, suggesting the presence of an allosteric binding site for amiloride on the receptor protein.  相似文献   

3.
B Liu  S Meloche  N McNicoll  C Lord  A De Léan 《Biochemistry》1989,28(13):5599-5605
We have studied the structure and function of the membrane atrial natriuretic factor R1 (ANF-R1) receptor using limited proteolysis and exoglycosidase treatment. Limited digestion with trypsin of the receptor from bovine adrenal zona glomerulosa membranes resulted in the conversion of the native 130-kDa receptor into a single membrane-associated ANF-binding proteolytic fragment of 70 kDa. The 70-kDa fragment bound ANF with enhanced binding affinity but retained intact ANF-R1 pharmacological specificity and was still sensitive to modulation by amiloride. Trypsin treatment of the membranes produced a dual effect on ANF binding. Low concentrations of trypsin (less than or equal to 25 micrograms/mg of protein) increased ANF binding while higher concentrations dose dependently reduced the binding of the hormone. The increase of ANF-binding activity was associated with the formation of the 70-kDa fragment while the loss of ANF binding paralleled the degradation of the 70-kDa fragment. Low concentrations of trypsin drastically decreased the ANF-sensitive guanylate cyclase activity of the membrane fraction. This loss of catalytic activity strongly correlated with the formation of the 70-kDa tryptic fragment. We also evaluated the effect of ANF binding on the susceptibility of the receptor to proteolytic cleavage. The occupied receptor exhibited a greater sensitivity to trypsin digestion than the unoccupied protein, consistent with the hypothesis that hormone binding induces an important conformational change in the receptor structure. On the other hand, the 70-kDa fragment was much more resistant to proteolysis when occupied by ANF, suggesting that the ANF-binding domain forms a very compact structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
H Kurose  T Inagami  M Ui 《FEBS letters》1987,219(2):375-379
The addition of ANF to Percoll-purified liver plasma membranes produced a slight activation of guanylate cyclase; the ANF-stimulated cyclase activity was further increased upon the addition of ATP to the enzyme assay mixture. The effect of ATP to potentiate the cyclase activation was concentration-dependent, required Mg2+ as a divalent cation, and was seen with membranes from various tissues and cells. ATP increased the maximal velocity of the cyclase without a change in the affinity for GTP or ANF. Phosphorylation by ATP might not be involved since ANF-stimulated guanylate cyclase was enhanced by non-phosphorylating ATP analogues as well. Thus, an allosteric ATP binding site is suggested to participate in ANF-induced regulation of membrane-bound guanylate cyclase.  相似文献   

5.
The present report demonstrates the presence in cultured rat aortic smooth muscle cells of a natriuretic factor receptor subtype with a specificity typical of the ANF-R1C (B-clone) receptor subtype. To prove the existence of this receptor subtype in this cell line we show that pCNP-(82-103) is the most potent activator of the intrinsic guanylate cyclase activity, and that [125I]pCNP-(82-103) binds to a specific receptor subtype which is insensitive to the ANF-R2 specific ligand, C-ANF. The investigation of its binding characteristics show the rank potency order of the natriuretic factors in competing for pCNP binding to be pCNP greater than pBNP greater than rANF. Furthermore it was possible to covalently photolabel this receptor subtype with underivatized]125I]pCNP and show that it is composed of a single subunit of 130 kDa with very high specificity for pCNP.  相似文献   

6.
The atrial natriuretic factor (ANF) signal transduction mechanism consists of the transformation of the signal information into the production of cyclic GMP. The binding of ANF to its receptor, which is also a guanylate cyclase, generates the signal. This cyclase has been termed atrial natriuretic factor receptor guanylate cyclase, ANF-RGC. ANF-RGC is a single transmembrane-spanning protein. The ANF receptor domain resides in the extracellular region of the protein, and the catalytic domain is located in the intracellular region at the C-terminus of the protein. Thus, the signal is relayed progressively from the receptor domain to the catalytic domain, where it is converted into the formation of cyclic GMP. The first transduction step is the direct binding of ATP with ANF-RGC. This causes allosteric regulation of the enzyme and primes it for the activation of its catalytic moiety. The partial structural motif of the ATP binding domain in ANF-RGC has been elucidated, and it has been named ATP regulatory module (ARM). In this presentation, we provide a brief review of the ATP-regulated transduction mechanism and the ARM model. The model depicts a configuration of the ATP-binding pocket that has been experimentally validated, and the model shows that the ATP-dependent transduction process is a two- (or more) step event. The first step involves the binding of ATP with its ARM. This partially activates the cyclase and prepares it for the subsequent steps, which are consistent with its being phosphorylated and attaining the fully activated state.  相似文献   

7.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.  相似文献   

8.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.  相似文献   

9.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.  相似文献   

10.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC), like the other members of the membrane guanylate cyclase family, is a single transmembrane-spanning protein. The transmembrane domain separates the protein into two regions, extracellular and intracellular. The extracellular region contains the ANF-binding domain and the intracellular region the catalytic domain located at the C-terminus of the protein. Preceding the catalytic domain, the intracellular region is comprised of the following functional domains: juxtaposed 40 amino acids to the transmembrane domain is the ATP-regulated module (ARM) domain [also termed the kinase homology domain (KHD)], and the putative dimerization domain. The ANF-RGC signaling is initiated by hormone, ANF, binding to its extracellular binding site. The binding signal is transduced through the transmembrane domain to the intracellular portion where ATP binding to the ARM domain partially activates the cyclase and prepares it for subsequent steps involving phosphorylation and attaining the fully activated state. This chapter reviews the signaling modules of ANF-RGC.  相似文献   

11.
12.
We have recently shown that atrial natriuretic factor (ANF) inhibits adenylate cyclase activity in rat platelets where only one population of ANF receptors (ANF-R2) is present, indicating that ANF-R2 receptors may be coupled to the adenylate cyclase/cAMP system. In the present studies, we have used ring-deleted peptides which have been reported to interact with ANF-R2 receptors also called clearance receptors (C-ANF) without affecting the guanylate cyclase/cGMP system, to examine if these peptides can also inhibit the adenylate cyclase/cAMP system. Ring-deleted analog C-ANF4-23 like ANF99-126 inhibited the adenylate cyclase activity in a concentration-dependent manner in rat aorta, brain striatum, anterior pituitary, and adrenal cortical membranes. The maximal inhibition was about 50-60% with an apparent Ki between 0.1 and 1 nM. In addition, C-ANF4-23 also decreased the cAMP levels in vascular smooth muscle cells in a concentration-dependent manner without affecting the cGMP levels. The maximal decrease observed was about 60% with an apparent Ki of about 1 nM. Furthermore, C-ANF4-23 was also able to inhibit cAMP levels and progesterone secretion stimulated by luteinizing hormone in MA-10 cell line. Other smaller fragments of ANF with ring deletions were also able to inhibit the adenylate cyclase activity as well as cAMP levels. Furthermore, the stimulatory effects of various agonists such as 5'-(N-ethyl)carboxamidoadenosine, dopamine, and forskolin on adenylate cyclase activity and cAMP levels were also significantly inhibited by C-ANF4-23. The inhibitory effect of C-ANF4-23 on adenylate cyclase was dependent on the presence of GTP and was attenuated by pertussis toxin treatment. These results indicate that ANF-R2 receptors or so-called C-ANF receptors are coupled to the adenylate cyclase/cAMP signal transduction system through inhibitory guanine nucleotide regulatory protein.  相似文献   

13.
《Life sciences》1994,55(9):PL169-PL176
This study was done to determine if a decrease in the aldosterone-suppressant effect of atrial natriuretic factor (ANF) by progesterone and an increase by estrogen was caused by modulation of adrenal zona glomerulosa ANF receptors. Freshly dispersed glomerulosa cells from virgin, 13–15 day pregnant, ovariectomized (OVX) estradiol-17β-treated and OVX progesterone-treated rats were used. Competitive displacement of specifically bound [125I]ANF1–8 with unlabelled ANF1–28 yielded concentrations of guanylate cyclase-linked ANF-R1 plus ANF-R2 (clearance) receptors and the displacement with unlabelled ANF4–23 yielded ANF-R2 receptors; the difference between the two was treated as the concentration of ANF-R1 receptors. Pregnancy and progesterone decreased and estrogen increased the number of glomerulosa ANF-R1 receptors. ANF produced a significantly greater suppression of potassium-induced aldosterone secretion in cells from OVX estradiol-treated rats than in cells from OVX progesterone-treated animals. These data suggest that the inhibition of the aldosterone-suppressant activity of ANF by progesterone is the result of a downregulation of ANF-R1 receptors.  相似文献   

14.
An atrial natriuretic factor (ANF) receptor from rat lung was solubilized with Lubrol-PX and purified by sequential chromatographic steps on GTP-agarose, DEAE-Sephacel, phenyl-agarose, and wheat germ agglutinin-agarose. The ANF receptor was enriched 19,000-fold. The purified receptor has a binding profile and properties that correspond to the affinity and specificity found in membranes and crude detergent extracts. Polyacrylamide gel electrophoresis of the purified preparation in the presence of sodium dodecyl sulfate and dithiothreitol showed the presence of one major protein band with a molecular mass of 120,000 daltons. When purified preparations were incubated with 125I-ANF, then cross-linked with disuccinimidyl suberate, the 120,000-dalton protein was specifically radiolabeled. This high affinity binding site for ANF co-purified with particulate guanylate cyclase. Particulate guanylate cyclase was purified to a specific activity of 19 mumol cyclic GMP produced/min/mg of protein utilizing Mn-GTP as substrate. This represented a 15,000-fold purification compared to the initial lung membrane preparation with Lubrol-PX. Gel permeation high performance liquid chromatography and glycerol density gradient sedimentation studies of the purified preparation also resulted in co-migration of specific ANF binding and guanylate cyclase activities. The co-purification of these activities suggests that both ANF binding and guanylate cyclase activities reside in the same macromolecular complex. Presumably ANF binding occurs at the external membrane surface and cyclic GMP synthesis at the internal membrane surface of this transmembrane glycoprotein.  相似文献   

15.
Many of the effects of ANP are mediated through the elevation of cellular cGMP levels by the activation of particulate guanylate cyclase. While the stimulation of this enzyme is receptor-mediated, the molecular mechanism of activation remains unknown. In this study we present evidence that ATP as well as its analogues adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) and adenylylimidophosphate (AMPPNP) activates guanylate cyclase from rat lung membranes and markedly potentiates the effect of ANP on the enzyme. The order of potency is ATP gamma S greater than ATP greater than AMPPNP. The enzyme activation by adenine nucleotide and ANP together is much more than the sum of the individual activations, suggesting that ATP may be the physiological component essential for the ANP-stimulated guanylate cyclase activation. The ATP gamma S-stimulated guanylate cyclase activity diminishes in the presence of various kinds of detergents, suggesting either that the conformation of an ATP binding site in guanylate cyclase is altered by detergents or that protein-protein interaction may be involved in the activation of guanylate cyclase by ATP. Guanylate cyclase from rat lung membranes is poorly activated by ANP and/or ATP gamma S after removing the cytosolic and weakly membrane-associated proteins or factors by centrifugation. Pre-incubation of the membranes with ATP gamma S retains enzyme activation after membrane washing. These results suggest either that ATP gamma S stabilizes the conformation of nucleotide binding site in guanylate cyclase from denaturation by membrane washing, or that the stimulatory effect of ATP on guanylate cyclase activity may be mediated by accessory proteins or non-protein cofactors which are lost during membrane washing, but remain bound to membranes by ATP gamma S pretreatment.  相似文献   

16.
A high-efficiency photoaffinity derivative of atrial natriuretic factor (ANF) was developed for studying the peptide binding domain of the receptor protein and for better characterization of this receptor in tissues with a low density of binding sites. The position of the photosensitive residue was chosen on the basis of a molecular conformational model and on structure-activity relationship studies which both indicate that the carboxy-terminal end of the peptide is part of a hydrophobic pole likely to interact deeply within the ANF binding pocket of the receptor. Selection of the photoreactive residue p-benzoylphenylalanine (BPA) as a substitute for arginine in position 125 of the peptide sequence led to a photoaffinity derivative with a high (63%) efficiency of covalent incorporation to the receptor protein. This derivative (BPA-ANF) has a 10-fold lower affinity when compared with ANF, but it is a full agonist in stimulating cGMP production and inhibiting aldosterone secretion in bovine adrenal zona glomerulosa. Photoaffinity labeling with BPA-ANF specifically identifies ANF-R1 and ANF-R2 receptor proteins with a 10-fold higher efficiency than with azido derivatives of ANF or with cross-linking agents. This new ANF derivative therefore appears to be useful for studying ANF receptors in tissues with low levels of expression, for locating receptor following cellular internalization, and for tagging proteolytic fragments of the receptor amenable to amino acid microsequencing.  相似文献   

17.
Duda T  Yadav P  Sharma RK 《Biochemistry》2011,50(7):1213-1225
ANF-RGC is the prototype receptor membrane guanylate cyclase being both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single transmembrane-spanning protein. After binding these hormones at the extracellular domain it at its intracellular domain signals activation of the C-terminal catalytic module and accelerates the production of its second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. ATP is obligatory for the posttransmembrane dynamic events leading to ANF-RGC activation. It functions through the ATP-regulated module, ARM (KHD) domain, of ANF-RGC. In the current over a decade held model "phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A" [Potter, L. R., and Hunter, T. (1998) Mol. Cell. Biol. 18, 2164-2172]. The presented study challenges this concept. It demonstrates that, instead, ATP allosteric modification of ARM is the primary signaling step of ANF-GC activation. In this two-step new dynamic model, ATP in the first step binds ARM. This triggers in it a chain of transduction events, which cause its allosteric modification. The modification partially activates (about 50%) ANF-RGC and, concomitantly, also prepares the ARM for the second successive step. In this second step, ARM is phosphorylated and ANF-RGC achieves additional (~50%) full catalytic activation. The study defines a new paradigm of the ANF-RGC signaling mechanism.  相似文献   

18.
Nitric oxide (NO), the principal endogenous ligand for soluble guanylate cyclase (sGC), stimulates that enzyme and accumulation of intracellular cGMP, which mediates many of the (patho) physiological effects of NO. Previous studies demonstrated that 2-substituted adenine nucleotides, including 2-methylthioATP (2MeSATP) and 2-chloroATP (2ClATP), allosterically inhibit guanylate cyclase C, the membrane-bound receptor for the Escherichia coli heat-stable enterotoxin in the intestine. The present study examined the effects of 2-substituted adenine nucleotides on crude and purified sGC. 2-Substituted nucleotides inhibited basal and NO-activated crude and purified sGC, when Mg2+ served as the substrate cation cofactor. Similarly, 2-substituted adenine nucleotides inhibited those enzymes when Mn2+, which activates sGC in a ligand-independent fashion, served as the substrate cation cofactor. Inhibition of sGC by 2-substituted nucleotides was associated with a decrease in Vmax, consistent with a noncompetitive mechanism. In contrast to guanylate cyclase C, 2-substituted nucleotides inhibited sGC by a guanine nucleotide-independent mechanism. These studies demonstrate that 2-substituted adenine nucleotides allosterically inhibit basal and ligand-stimulated sGC. They support the suggestion that allosteric inhibition by adenine nucleotides is a general characteristic of the family of guanylate cyclases. This allosteric inhibition is mediated by direct interaction of adenine nucleotides with sGC, likely at the catalytic domain in a region outside the substrate-binding site.  相似文献   

19.
ATP is an obligatory agent for the atrial natriuretic factor (ANF) and the type C natriuretic peptide (CNP) signaling of their respective receptor guanylate cyclases, ANF-RGC and CNP-RGC. Through a common mechanism, it binds to a defined ARM domain of the cyclase, activates the cyclase and transduces the signal into generation of the second messenger cyclic GMP. In this presentation, the authors review the ATP-regulated transduction mechanism and refine the previously simulated three-dimensional ARM model (Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000;214:7-14; reviewed in: Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001;79: 682-91; Sharma RK. Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 2002;230:3-30). The model depicts the ATP-binding dependent configurational changes in the ARM and supports the concept that in the first step, ATP partially activates the cyclase and primes it for the subsequent transduction steps, resulting in full activation of the cyclase.  相似文献   

20.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号