首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prominin-1 (CD133) is a cholesterol-interacting pentaspan membrane protein concentrated in plasma membrane protrusions. In epithelial cells, notably neuroepithelial stem cells, prominin-1 is found in microvilli, the primary cilium and the midbody. These three types of apical membrane protrusions are subject to remodeling during (neuro)epithelial cell differentiation. The protrusion-specific localization of prominin involves its association with a distinct cholesterol-based membrane microdomain. Moreover, the three prominin-1-containing plasma membrane protrusions are the origin of at least two major subpopulations of prominin-1-containing extracellular membrane particles. Intriguingly, the release of these particles has been implicated in (neuro)epithelial cell differentiation.  相似文献   

2.
The human AC133 antigen and mouse prominin are structurally related plasma membrane proteins. However, their tissue distribution is distinct, with the AC133 antigen being found on hematopoietic stem and progenitor cells and prominin on various epithelial cells. To determine whether the human AC133 antigen and mouse prominin are orthologues or distinct members of a protein family, we examined the human epithelial cell line Caco-2 for the possible expression of the AC133 antigen. By both immunofluorescence and immunoprecipitation, the AC133 antigen was found to be expressed on the surface of Caco-2 cells. Interestingly, immunoreactivity for the AC133 antigen, but not its mRNA level, was down-regulated upon differentiation of Caco-2 cells. The AC133 antigen was specifically located at the apical rather than basolateral plasma membrane. An apical localization of the AC133 antigen was also observed in various human embryonic epithelia including the neural tube, gut, and kidney. Electron microscopy revealed that, within the apical plasma membrane of Caco-2 cells, the AC133 antigen was confined to microvilli and absent from the planar, intermicrovillar regions. This specific subcellular localization did not depend on an epithelial phenotype, because the AC133 antigen on hematopoietic stem cells, as well as that ectopically expressed in fibroblasts, was selectively found in plasma membrane protrusions. Hence, the human AC133 antigen shows the features characteristic of mouse prominin in epithelial and transfected non-epithelial cells, i.e. a selective association with apical microvilli and plasma membrane protrusions, respectively. Conversely, flow cytometry of murine CD34(+) bone marrow progenitors revealed the cell surface expression of prominin. Taken together, the data strongly suggest that the AC133 antigen is the human orthologue of prominin.  相似文献   

3.
Summary The ependymal lining of the lateral ventricles of the rabbit brain was studied by means of scanning (SEM) and transmission electron microscopy (TEM). There exist cells devoid of cilia in the anterior horn over the region of the caudate nucleus, in the inferior horn over the hippocampus and on the opposite side over cortical regions. On the surface of some of these ependymal cells, accumulations of cytoplasmic folds and globules can be found. They bulge at different height over the ependymal cells. Clots of these cell particles are tied off from the cell, coming to lie as globules either on or between the cilia of the ependyma. TEM reveals that these tissue protrusions are cell debris consisting of different sized vesicles, cell organelles, tubuli and filaments. They originate from the ependymal layer but may reach down to subependymal cells. Multivesicular protrusions into the ventricular lumen are also observed. Possible causes of these protrusions are discussed; they are likely to be related to the age of the animals.On the ependyma of the caudate nucleus cilia, microvilli, microblebs and supraependymal neuronal cell processes are distributed unevenly over the surface. Within regions where cilia predominate there are cells which are tightly covered with microvilli. A certain direction of the course of the supraependymal neuronal fibers could not be found.The author is pleased to acknowledge useful discussions with Prof. Dr. med. E. van der Zypen. This study was partly supported by the Stanley Thomas Johnson Foundation  相似文献   

4.
Prominin-2 is a pentaspan membrane glycoprotein structurally related to the cholesterol-binding protein prominin-1, which is expressed in epithelial and non-epithelial cells. Although prominin-1 expression is widespread throughout the organism, the loss of its function solely causes retinal degeneration. The finding that prominin-2 appears to be restricted to epithelial cells, such as those found in kidney tubules, raises the possibility that prominin-2 functionally substitutes prominin-1 in tissues other than the retina and provokes a search for a definition of its morphological and biochemical characteristics. Here, we have investigated, by using MDCK cells as an epithelial cell model, whether prominin-2 shares the biochemical and morphological properties of prominin-1. Interestingly, we have found that, whereas prominin-2 is not restricted to the apical domain like prominin-1 but is distributed in a non-polarized fashion between the apical and basolateral plasma membranes, it retains the main feature of prominin-1, i.e. its selective concentration in plasmalemmal protrusions; prominin-2 is confined to microvilli, cilia and other acetylated tubulin-positive protruding structures. Similar to prominin-1, prominin-2 is partly associated with detergent-resistant membranes in a cholesterol-dependent manner, suggesting its incorporation into membrane microdomains, and binds directly to plasma membrane cholesterol. Finally, prominin-2 is also associated with small membrane particles that are released into the culture media and found in a physiological fluid, i.e. urine. Together, these data show that all the characteristics of prominin-1 are shared by prominin-2, which is in agreement with a possible redundancy in their role as potential organizers of plasma membrane protrusions.  相似文献   

5.
In a comparison of three different tissues, the membrane cytoskeleton linker protein ezrin was found to assume high levels of phosphorylation on threonine-567 (T567) in the brush border membranes of renal proximal tubule cells and small intestine enterocytes, in contrast to the apical canalicular membrane of gastric parietal cells. Together with an earlier observation that increased T567 phosphorylation is associated with more elaborate microvilli in parietal cells, this comparative study suggested a higher phosphorylation level requirement for the denser and more uniform distribution of microvilli at brush border surfaces. Using a kinase inhibitor, staurosporin, and metabolic inhibitor, sodium azide, relatively high turnover of ezrin T567 phosphorylation was observed in all three epithelia. Aiming to understand the role of phosphorylation turnover in these tissues, detergent extraction analysis of gastric glands and proximal tubules revealed that an increased phosphorylation on ezrin T567 greatly enhanced its association with F-actin, while ezrin-membrane interaction persisted regardless of the changes of phosphorylation level on ezrin T567. Finally, expression of Thr567Asp mutant ezrin, which mimics the phospho-ezrin state but does not allow turnover, caused aberrant growth of membrane projections in cultured proximal tubule cells, consistent with what had previously been observed in several cell lines and gastric parietal cells. These results fit into a model of surface plasticity, which posits that the turnover of phosphorylation on T567 empowers ezrin to relax and reposition membrane to the underlying cytoskeleton under varying conditions of filament growth or rapid membrane expansion (or depletion).  相似文献   

6.
The dissociation, migration, and remodeling of epithelial monolayers induced by hepatocyte growth factor (HGF) entail modifications in cell adhesion and in the actin cytoskeleton through unknown mechanisms. Here we report that ezrin, a membrane–cytoskeleton linker, is crucial to HGF-mediated morphogenesis in a polarized kidney-derived epithelial cell line, LLC-PK1. Ezrin is a substrate for the tyrosine kinase HGF receptor both in vitro and in vivo. HGF stimulation causes enrichment of ezrin recovered in the detergent-insoluble cytoskeleton fraction. Overproduction of wild-type ezrin, by stable transfection in LLC-PK1 cells, enhances cell migration and tubulogenesis induced by HGF stimulation. Overproduction of a truncated variant of ezrin causes mislocalization of endogenous ezrin from microvilli into lateral surfaces. This is concomitant with altered cell shape, characterized by loss of microvilli and cell flattening. Moreover, the truncated variant of ezrin impairs the morphogenic and motogenic response to HGF, thus suggesting a dominant-negative mechanism of action. Site-directed mutagenesis of ezrin codons Y145 and Y353 to phenylalanine does not affect the localization of ezrin at microvilli, but perturbs the motogenic and morphogenic responses to HGF. These results provide evidence that ezrin displays activities that can control cell shape and signaling.  相似文献   

7.
The preimplantation development of the mouse embryo leads to the formation of two populations of cells: the trophectoderm, which is a perfect epithelium, and the inner cell mass. The divergence between these two lineages is the result of asymmetric divisions, which can occur after blastomere polarization at compaction. The apical pole of microvilli is the only asymmetric feature maintained during mitosis and polarity is reestablished only in daughter cells that inherit all or a sufficient part of this pole. To analyze the role of ezrin in the formation and stabilization of the pole of microvilli, we isolated and cultured inner cell masses (ICM). These undifferentiated cells can differentiate very quickly into epithelial cells. After isolation of the ICMs, ezrin relocalizes at the cell cortex before the formation of microvilli. This redistribution occurs in the absence of protein synthesis. The formation of microvilli at the apical surface of the outer cells of ICM correlates with a major posttranslational modification of ezrin. We show here that this posttranslational modification is not controlled by a serine/threonine kinase but an O-glycosylation may partially contribute to it. These data suggest that ezrin has at least two roles during development. First, ezrin may be involved in the formation of microvilli because it localizes at the cell cortex before microvilli appear in ICMs. Second, ezrin may stabilize the pole of microvilli because it is modified posttranslationally when microvilli form.  相似文献   

8.
9.
CLIC-5A is a member of the chloride intracellular channel protein family, which is comprised of six related human genes encoding putative chloride channels. In this study, we found that reconstitution of purified recombinant CLIC-5A into artificial liposomes resulted in a dose-dependent chloride efflux that was sensitive to the chloride channel blocker IAA-94. CLIC-5A was originally isolated as a component of an ezrin-containing cytoskeletal complex from human placental microvilli. Here we show that similar protein complexes can be isolated using either immobilized CLIC-5A or the C-terminal F-actin-binding domain of ezrin and that actin polymerization is required for de novo assembly of these complexes. To investigate the behavior of CLIC-5A in vivo, JEG-3 placental choriocarcinoma cells were stably transfected with epitope-tagged CLIC-5A. In fixed cells, CLIC-5A displayed a polarized distribution and colocalized with ezrin in apical microvilli. Microvillar localization of CLIC-5A was retained after Triton X-100 extraction and was disrupted by treatment with latrunculin B. In transient transfections assays, we mapped a region between residues 20 and 54 of CLIC-5A that is required for targeting of CLIC-5A to microvilli in JEG-3 cells. Interestingly, expression of CLIC-5A in JEG-3 cells did not enhance the rate of iodide efflux in intact cells, suggesting that if CLIC-5A is a chloride channel, its channel activity may be restricted to intracellular membrane compartments in these cells. Regardless of its role in ion transport, CLIC-5A, like ezrin, may play an important role in the assembly or maintenance of F-actin-based structures at the cell cortex.  相似文献   

10.
Stimulation of gastric acid secretion in parietal cells involves the translocation of the proton pump (H,K-ATPase) from cytoplasmic tubulovesicles to the apical membrane to form long, F-actin-containing, microvilli. Following secretion, the pump is endocytosed back into tubulovesicles. The parietal cell therefore offers a system for the study of regulated membrane recycling, with temporally separated endocytic and exocytic steps. During cAMP-mediated stimulation, an 80 kDa peripheral membrane protein becomes phosphorylated on serine residues. This protein is a major component, together with actin and the pump, of the isolated apical membrane from stimulated cells, but not the resting tubulovesicular membrane. Here we show that the gastric 80 kDa phosphoprotein is closely related or identical to ezrin, a protein whose phosphorylation on serine and tyrosine residues was recently implicated in the induction by growth factors of cell surface structures on cultured cells [Bretscher, A. (1989) J. Cell Biol., 108, 921-930]. Light and electron microscopy reveal that ezrin is associated with the actin filaments of the microvilli of stimulated cells, but not with the filaments in the terminal web. In addition, a significant amount of ezrin is present in the basolateral membrane infoldings of both resting and stimulated cells. Extraction studies show that ezrin is a cytoskeletal protein in unstimulated and stimulated cells, and its association with the cytoskeleton is more stable in stimulated cells. These studies indicate that ezrin is a membrane cytoskeletal linker that may play a key role in the control of the assembly of secretory apical microvilli in parietal cells and ultimately in the regulation of acid secretion. Taken together with the earlier studies, we suggest that ezrin might be a general substrate for kinases involved in the regulation of actin-containing cell surface structures.  相似文献   

11.
The present study describes the ultrastructural localization of two important circulating schistosome antigens--the circulating anodic antigen (CAA) and the circulating cathodic antigen (CCA)--in livers of mice at various time intervals after infection with Schistosoma mansoni. For the demonstration of these antigens at the electron microscope level use was made of a direct, double immunogold labeling procedure, in which CAA-specific monoclonal antibodies, labeled with 5-nm gold particles, and CCA-specific monoclonal antibodies, labeled with 15-nm gold particles, were used. Both antigens were localized in granules and in inclusion bodies of Kupffer cells and granuloma macrophages and it was found that in these compartments the degree of 5- and 15-nm gold labeling increased with the duration of the infection. Sometimes gold particles were also encountered on the cell surface and in endocytotic vesicles of these cells, in endothelial cells, and in the space of Disse. From these data it was concluded that in the liver CAA and CCA were primarily accumulated in granules and inclusion bodies of Kupffer cells and granuloma macrophages. It is discussed whether at these locations both antigens are degraded by lysosomal enzymes and whether these antigens are complexed with antibodies.  相似文献   

12.
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.  相似文献   

13.
Cell migration is a well organized process regulated by the extracellular matrix-mediated cytoskeletal reorganization. The signaling adaptor protein Crk has been shown to regulate cell motility, but its precise role is still under investigation. Herein, we report that Crk associates with ERM family proteins (including ezrin, radixin, and moesin), activates RhoA, and promotes cell motility toward hyaluronic acid. The binding of Crk with ERMs was demonstrated both by transient and stable protein expression systems in 293T cells and 3Y1 cells, and it was shown that v-Crk translocated the phosphorylated form of ERMs to microvilli in 3Y1 cells by immunofluorescence and immunoelectron microscopy. This v-Crk-dependent formation of microvilli was suppressed by inhibitors of Rho-associated kinase, and the activity of RhoA was elevated by coexpression of c-Crk-II and ERMs in 3Y1 cells. In concert with the activation of RhoA by Crk, Crk was found to associate with Rho-GDI, which has been shown to bind to ERMs. Furthermore, upon hyaluronic acid treatment, coexpression of c-Crk-II and ERMs enhanced cell motility, whereas the sole expression of c-Crk-II or either of the ERMs decreased the motility of 3Y1 cells. These results suggest that Crk may be involved in regulation of cell motility by a hyaluronic acid-dependent mechanism through an association with ERMs.  相似文献   

14.
The apical microvilli are closely related with the development and the maintenance of cell polarization, and the length of microvilli varies in a regular way among cell types. Ezrin, a member of the ezrin/radixin/moesin (ERM) family, seems to be involved in the formation and stabilization of the apical microvilli. We found that phosphorylation of ezrin caused elongation of microvilli via a p38 MAP-kinase signaling pathway in an immortalized mouse hepatic cell line. When, in the oncogenic Raf-1-transfected mouse hepatic cell line, epithelial to mesenchymal transition (EMT) indicated as down-regulation of E-cadherin and up-regulation of Snail occurred, loss of microvilli and down-regulation of ezrin but not radixin and moesin were also observed. In the Raf-1 transfectants treated with the MAP-kinase inhibitor PD98059 and the p38 MAP-kinase inhibitor SB203580, the numbers of microvilli and the expression of ezrin, E-cadherin and Snail were recovered. More interestingly, treatment with SB203580 induced elongation of microvilli and increased phosphorylation of ezrin (at Thr-567 and Tyr-353). Phosphorylated ezrin-positive dots were colocalized with actin-positive dots on the surface of some Raf-1 transfectants treated with SB203580. These results suggested that phosphorylation of ezrin via the p38 MAP-kinase signaling pathway might be involved in the formation of microvilli during development of epithelial cell polarization.  相似文献   

15.
The Arp2/3 complex-mediated assembly and protrusion of a branched actin network at the leading edge occurs during cell migration, although some studies suggest it is not essential. In order to test the role of Arp2/3 complex in leading edge protrusion, Swiss 3T3 fibroblasts and Jurkat T cells were depleted of Arp2 and evaluated for defects in cell morphology and spreading efficiency. Arp2-depleted fibroblasts exhibit severe defects in formation of sheet-like protrusions at early time points of cell spreading, with sheet-like protrusions limited to regions along the length of linear protrusions. However, Arp2-depleted cells are able to spread fully after extended times. Similarly, Arp2-depleted Jurkat T lymphocytes exhibit defects in spreading on anti-CD3. Interphase Jurkats in suspension are covered with large ruffle structures, whereas mitotic Jurkats are covered by finger-like linear protrusions. Arp2-depleted Jurkats exhibit defects in ruffle assembly but not in assembly of mitotic linear protrusions. Similarly, Arp2-depletion has no effect on the highly dynamic linear protrusion of another suspended lymphocyte line. We conclude that Arp2/3 complex plays a significant role in assembly of sheet-like protrusions, especially during early stages of cell spreading, but is not required for assembly of a variety of linear actin-based protrusions.  相似文献   

16.
Metastatic cancers, once established, are the primary cause of mortality associated with cancer. Previously, we used a genomic approach to identify metastasis-associated genes in cancer. From this genomic data, we selected ezrin for further study based on its role in physically and functionally connecting the actin cytoskeleton to the cell membrane. In a mouse model of osteosarcoma, a highly metastatic pediatric cancer, we found ezrin to be necessary for metastasis. By imaging metastatic cells in the lungs of mice, we showed that ezrin expression provided an early survival advantage for cancer cells that reached the lung. AKT and MAPK phosphorylation and activity were reduced when ezrin protein was suppressed. Ezrin-mediated early metastatic survival was partially dependent on activation of MAPK, but not AKT. To define the relevance of ezrin in the biology of metastasis, beyond the founding mouse model, we examined ezrin expression in dogs that naturally developed osteosarcoma. High ezrin expression in dog tumors was associated with early development of metastases. Consistent with this data, we found a significant association between high ezrin expression and poor outcome in pediatric osteosarcoma patients.  相似文献   

17.
No direct evidence has been reported whether the spatial organization of ICAM-1 on the cell surface is linked to its physiological function in terms of leukocyte adhesion and transendothelial migration (TEM). Here we observed that ICAM-1 by itself directly regulates the de novo elongation of microvilli and is thereby clustered on the microvilli. However, truncation of the intracellular domain resulted in uniform cell surface distribution of ICAM-1. Mutation analysis revealed that the C-terminal 21 amino acids are dispensable, whereas a segment of 5 amino acids ((507)RKIKK(511)) in the NH-terminal third of intracellular domain, is required for the proper localization and dynamic distribution of ICAM-1 and the association of ICAM-1 with F-actin, ezrin, and moesin. Importantly, deletion of the (507)RKIKK(511) significantly delayed the LFA-1-dependent membrane projection and decreased leukocyte adhesion and subsequent TEM. Endothelial cells treated with cell-permeant penetratin-ICAM-1 peptides comprising ICAM-1 RKIKK sequences inhibited leukocyte TEM. Collectively, these findings demonstrate that (507)RKIKK(511) is an essential motif for the microvillus ICAM-1 presentation and further suggest a novel regulatory role for ICAM-1 topography in leukocyte TEM.  相似文献   

18.
Intercellular adhesion between adjacent airway epithelial cells plays a critical role in maintaining the barrier function of the respiratory mucosa. In the current study, we examined the expression and interaction of cell surface adhesion molecules (E-cadherin, ICAM-1, and MUC1) and their intracellular binding partners (alpha-catenin, beta-catenin, gamma-catenin, and ezrin) in 16HBE14o-, HBE1, 1HAEo-, BEAS-2B, A549, and NCI-H292 human airway epithelial cells. Expression of E-cadherin and MUC1, both in whole cell lysates and biotinylated surface proteins, was observed in 16HBE14o-, HBE1, A549, and NCI-H292 cells, while ICAM-1 was detected only in NCI-H292. In contrast, alpha-, beta-, and gamma-catenin and ezrin were expressed in all of the cells. E-cadherin formed coimmunoprecipitation complexes with beta- and gamma-catenin, whereas MUC1 only associated with beta-catenin. ICAM-1, but not MUC1, coimmunoprecipitated with ezrin in NCI-H292 cells. We conclude that airway epithelial cell-cell adhesion involves a complex network of protein-protein interactions mediated by a diverse array of membrane-bound and cytosolic protein partners.  相似文献   

19.
 Acid secretion in gastric parietal cells is preceded by a dramatic increase in surface area of the apical membrane compartment, due to fusion of the H+/K+-ATPase-containing tubulovesicles. The resulting canaliculi must be fixed for a period of minutes by cytoskeletal elements to sustain acid secretion. Using immunofluorescence microscopy, the cytoskeletal linker molecule, ezrin, localizes to the apical canalicular membrane of parietal cells. Antibodies against ezrin precipitate H+/K+-ATPase and β-actin. In addition to its apical localization, ezrin is found to be colocalized at the basolateral compartment with synapse-associated protein (SAP) 97. Immunoprecipitation confirms a direct binding of SAP 97 and ezrin. We conclude that ezrin is fixed to the basolateral compartment by SAP 97. Upon stimulation of acid secretion, ezrin moves to the apical surface where it might stabilize the canalicular microvilli by connecting to β-actin and H+/K+-ATPase, thereby sustaining acid secretion. Accepted: 14 January 1999  相似文献   

20.
The small G protein RhoA and its GDP/GTP exchange factors (GEFs) Net and Dbl can transform NIH 3T3 fibroblasts, dependent on the activity of the RhoA effector kinase ROCK. We investigated the role of the cytoskeletal linker protein ezrin in this process. RhoA effector loop mutants which can bind ROCK induce relocalization of ezrin to dorsal actin-containing cell surface protrusions, as do Net and Dbl. Both processes are inhibited by the ROCK inhibitor Y27632, which also inhibits association of ezrin with the cytoskeleton, and phosphorylation of T567, conserved between ezrin and its relatives radixin and moesin. ROCK can phosphorylate the ezrin C-terminus in vitro. The ezrin mutant T567A cannot be relocalized by activated RhoA, Net or Dbl or by ROCK itself, and also inhibits RhoA-mediated contractility and focal adhesion formation. Moreover, ezrin T567A, but not wild-type ezrin, restores contact inhibition to Net- and Dbl-transformed cells, and inhibits the activity of Net and Ras in focus formation assays. These results implicate ROCK-mediated ezrin C-terminal phosphorylation in transformation by RhoGEFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号