首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Jarsch  A B?ck 《Nucleic acids research》1983,11(21):7537-7544
The DNA sequence of the spacer (plus flanking) regions separating the 16S rRNA and 23S rRNA genes of two presumptive rDNA operons of the archaebacterium Methanococcus vannielii was determined. The spacers are 156 and 242 base pairs in size and they share a sequence homology of 49 base pairs following the 3' terminus of the 16S rRNA gene and of about 60 base pairs preceding the 5' end of the 23S rRNA gene. The 242 base pair spacer, in addition contains a sequence which can be transcribed into tRNAAla, whereas no tRNA-like secondary structure can be delineated from the 156 base pair spacer region. Almost complete sequence homology was detected between the end of the 16S rRNA gene and the 3' termini of either Escherichia coli or Halobacterium halobium 16S rRNA, whereas the putative 5' terminal 23S rRNA sequence shared partial homology with E. coli 23S rRNA and eukaryotic 5.8S rRNA.  相似文献   

2.
本文测定了蓖麻蚕18S rRNA基因(rDNA) 3′末端及其外侧的DNA顺序。将这一顺序与家蚕、果蝇、大鼠 18S rDNA 3′末端顺序以及大肠杆菌16 S rDNA 3′末端顺序作了比较,发现它们间有惊人的同源性。不仅如此,这些基因的3′末端所形成的茎环结构也十分相似,在3′末端还有保守的EcoRI切点。这些研究结果对了解18S rRNA 3′末端在蛋白质合成中的功能及在rRNA前体加工成熟中的作用;对于了解rRNA基因的进化打下了基础。  相似文献   

3.
测定基因5′端位置是研究基因转录调控的一个重要前提。本文将蓖麻蚕18S rRNA基因DNA的5′端用~(32)P标记,然后与18S rRNA杂交,再用S1核酸酶水解掉非杂交区的DNA和RNA。分析放射自显影的结果,测出18S rRNA基因5′端的位置。在18S rRNA基因的BglⅡ_2位点向EcoRⅠ,方向延伸约220bp处,从这一结果,可知道蓖麻蚕rRNA基因的转录方向是5′EcoRⅠ_2→BglⅡ_23′。  相似文献   

4.
高家国  汪训明 《遗传学报》1989,16(4):263-268
本文报道了油菜叶绿体16S rRNA基因的全顺序及其5′端上游的156bp和3′端下游的101bp的核苷酸顺序。油菜叶绿体16s rRNA基因长为1491bp,和烟草、玉米相比,同源程度分别为98.5%、96.1%。油菜叶绿体16S rRNA基因5′端上游及3′端下游的顺序能互补而形成一个较大的茎环结构,但与烟草相比,由于3′端下游顺序有79bp的缺失,因此,该结构中的茎部分大小仅为烟草的二分之一。  相似文献   

5.
The terminal sequences of Bombyx mori 18S ribosomal RNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
The 5' and 3' terminal T1 oligonucleotides of 32p-labelled B. mori 18S ribosomal RNA were isolated by a two dimensional electrophoretic (diagonal) technique. Nucleotide sequence analysis showed that the 3' terminal fragment, (G)AUCAUUAOH, is identical to that previously obtained from the 18S rRNA of several other eukaryotic species. The sequence of the B. mori 5' terminal fragment is pUCCUCG.  相似文献   

6.
7.
利用多对引物,扩增并测定出大黄鱼16SrRNA基因和18SrRNA基因的部分序列,其长度分别为1202bp和1275bp,16SrRNA基因序列的GC含量为46.12%,18SrRNA基因的Gc含量为53.oo%。将大黄鱼16SrRNA基因序列与GenBank中15种硬骨鱼类的同源序列结合,同时将其18SrRNA基因序列与GenBank中9种脊索动物的同源序列相结合,运用软件获得各自序列间差异百分比,转换和颠换数值等信息。基于这两种基因序列,利用NJ法和BI法,分别构建16种硬骨鱼类和10种脊索动物的分子系统树。18SrRNA构建的系统树包括三大支,一支为哺乳类、鸟类和爬行类共6个物种,一支为两栖类的1个物种,另一支为2种硬骨鱼类。16SrRNA构建的系统树显示大黄鱼所在的石首鱼科与鲈科和盖刺鱼科亲缘关系较近。此外还讨论了这两个基因的序列特征。  相似文献   

8.
9.
10.
Amplification of the gene encoding 23S rRNA of Plesiomonas shigelloides by polymerase chain reaction (PCR), with primers complementary to conserved regions of 16S and the 3' end of 23S rRNA genes, resulted in a DNA fragment of approximately 3 kb. This fragment was cloned in Escherichia coli and its nucleotide sequence determined. The region encoding 23S rRNA shows high homology with the published sequences of 23S rRNA from other members of the gamma division of Proteobacteria. The sequence of the intergenic spacer region, between the 16S and 23S rRNA genes, was determined in a further two clones. In one the sequence of a single tRNA(Glu) was found which was absent from the other two. This variation in sequence suggests that the different clones may be derived from different ribosomal RNA operons.  相似文献   

11.
Y Suzuki  A Nagata  Y Ono    T Yamada 《Journal of bacteriology》1988,170(6):2886-2889
The complete nucleotide sequence of the 16S rRNA gene of Mycobacterium bovis BCG was determined. Its coding region was estimated to be 1,536 base pairs long. The nucleotide sequence of the gene in M. bovis BCG has homologies of 75 and 89% with those of Escherichia coli and Streptomyces lividans, respectively.  相似文献   

12.
质粒pBN119的3.2kb BamHI片段的PvuⅡ-BglⅡ片段全顺序长为840bp,其中含油菜叶绿体16S rRNA基因5′端的140bp。通过寻找GTTC顺序,发现在395至468位核苷酸之间是tRNA~(Val)基因;在73至118位核苷酸之间是一个蛋白阅读框。和已发表的玉米叶绿体16S rRNA前导顺序进行比较,同样存在三个相应的大肠杆菌RNA聚合酶的结合位点。和大肠杆菌的启动子及相应基因作比较,表明叶绿体基因组具有很明显的原核性,但其tRNA~(Val)基因没有CCA3′顺序。在16S rRNA基因、tRNA~(Val)基因及蛋白阅读框的5′端附近均能找到一个比较稳定的茎环结构。我们推测这些茎环结构可能和位于反问重复顺序上的某些基因的转录调节有关。  相似文献   

13.
The sequence and structure of the large (20s) mitochondrial (mt) rRNA gene and flanking regions from Paramecium primaurelia have been determined. The gene contains two regions of strong homology with other large mt rRNAs: one 44-base region near the 5' end and a 321-base region near the 3' end. Another region of strong homology to both ends of E. coli 23s RNA exists at loci consistent with these regions. The Paramecium gene appears to be 2204 bases in length and contains slightly more homology to E. coli rRNA than its mammalian or fungal counterparts. The gene, located about 1200 bp from the replicative terminal end of the linear mt DNA, is transcribed in the same polarity as replication. Previous R-looping studies detected no large introns within the gene. Here we describe sequences resembling degenerate rRNAs, one of which could represent a small intron. A tRNA tyr gene was found on the same DNA strand, 127 bp downstream from the large rRNA presumptive 3' end. The tRNA is flanked on both sides by short DNA regions of approximately 90% A + T content.  相似文献   

14.
15.
The occurrence of the nucleotides "...CCUUAOH" at the 3' terminus of the 16S rRNA of the small subunit of the Escherichia coli ribosome led to the suggestion that they may have a direct base pairing with the termination codon in the termination event of protein biosynthesis (Shine and Dalgarno 1974). We have examined this concept with two approaches, firstly using a 30S subunit whose 16S rRNA has been modified with a fluorescein moiety on the terminal adenosine together with the antibody against the moiety, and secondly with an oligonucleotide, UAAGG, complementary to the terminal pentanucleotide sequence of the rRNA. Collectively the data suggest that the nucleotides at the 3' terminus of 16S rRNA are not critically involved in base pairing during termination codon recognition.  相似文献   

16.
The 5.8 S rRNA gene of Prorocentrum micans, a primitive dinoflagellate, has been cloned and its 159 base pairs (bp) have been sequenced along with the two flanking internal transcribed spacers (ITS 1 and 2), respectively, 212 and 195 bp long. Nucleotide sequence homologies between several previously published 5.8 S rRNA gene sequences including those from another dinoflagellate, an ascomycetous yeast, protozoans, a higher plant and a mammal have been determined by sequence alignment. Two prokaryotic 5'-ends of the 23 S rRNA gene have been compared owing to their probable common origin with eucaryotic 5.8 S rRNA genes. Several nucleotides are distinctive for dinoflagellates when compared with either typical eucaryotes or procaryotes. This is consistent with an early divergence of the dinoflagellate lineage from the typical eucaryotes. The secondary structure of dinoflagellate 5.8 S rRNA molecules fits the model of Walker et al. (1983). Conserved nucleotides which distinguish dinoflagellate 5.8 S rRNA from that of other eucaryotes are located in specific loops which are assumed to play a structural role in the ribosome. A 5.8 S rRNA phylogenetic tree which is proposed, based on sequence data, supports our initial assumption of the dinoflagellates.  相似文献   

17.
A bacterial strain, designated BzDS03 was isolated from water sample, collected from Dal Lake Srinagar. The strain was characterized by using 16S ribosomal RNA gene and 16S-23S rRNA internal transcribed spacer region sequences. Phylogenetic analysis showed that 16S rRNA sequence of the isolate formed a monophyletic clade with genera Escherichia. The closest phylogenetic relative was Escherichia coli with 99% 16S rRNA gene sequence similarity. The result of Ribosomal database project's classifier tool revealed that the strain BzDS03 belongs to genera Escherichia.16S rRNA sequence of isolate was deposited in GenBank with accession number FJ961336. Further analysis of 16S-23S rRNA sequence of isolate confirms that the identified strain BzDS03 be assigned as the type strain of Escherichia coli with 98% 16S-23S rRNA sequence similarity. The GenBank accession number allotted for 16S-23S rRNA intergenic spacer sequence of isolate is FJ961337.  相似文献   

18.
Characterization of Paenibacillus popilliae rRNA operons   总被引:1,自引:0,他引:1  
The terminal 39 nucleotides on the 3' end of the 16S rRNA gene, along with the complete DNA sequences of the 5S rRNA, 23S rRNA, tRNA(Ile), and tRNA(Ala) genes were determined for Paenibacillus popilliae using strains NRRL B-2309 and Dutky 1. Southern hybridization analysis with a 16S rDNA hybridization probe and restriction-digested genomic DNA demonstrated 8 copies of the 16S rRNA gene in P. popilliae strains KLN 3 and Dutky 1. Additionally, the 23S rRNA gene in P. popilliae strains NRRL B-2309, KLN 3, and Dutky 1 was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to occur as 8 copies. It was concluded that these 3 P. popilliae strains contained 8 rrn operons. The 8 operon copies were preferentially located on approximately one-half of the chromosome and were organized into 3 different patterns of genes, as follows: 16S-23S-5S, 16S-ala-23S-5S, and 16S-5S-ile-ala-23S-5S. This is the first report to identify a 5S rRNA gene between the 16S and 23S rRNA genes of a bacterial rrn operon. Comparative analysis of the nucleotides on the 3' end of the 16S rRNA gene suggests that translation of P. popilliae mRNA may occur in Bacillus subtilis and Escherichia coli.  相似文献   

19.
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction.  相似文献   

20.
The complete 1473-bp sequence of the 16S rRNA gene from the archaebacterium Halobacterium halobium has been determined. Alignment with the sequences of the 16S rRNA gene from the archaebacteria Halobacterium volcanii and Halococcus morrhua reveals similar degrees of homology, about 88%. Differences in the primary structures of H. halobium and eubacterial (Escherichia coli) 16S rRNA or eukaryotic (Dictyostelium discoideum) 18S rRNA are much higher, corresponding to 63% and 56% homology, respectively. A comparison of the nucleotide sequence of the H. halobium 16S rRNA with those of its archaebacterial counterparts generally confirms a secondary structure model of the RNA contained in the small subunit of the archaebacterial ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号