首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Focal adhesion kinase (FAK) plays an important role in integrin-mediated signal transduction pathways and its C-terminal noncatalytic domain Fak-related non-kinase (FRNK), which is autonomously expressed, acts as an inhibitor of FAK. A model has been proposed where FAK and FRNK compete for an essential common binding protein. A FRNK variant in which the direct interaction with v-Crk-associated tyrosine kinase substrate (CAS) was disturbed by point mutations still functioned as an inhibitor of FAK, suggesting that FRNK is unlikely to inhibit FAK by sequestering CAS. Deletion variants of FRNK within the region N-terminal to the focal adhesion targeting (FAT) sequence were still able to inhibit FAK function, indicating that this region is dispensable for the inhibitory effect of FRNK. Overexpression of a green fluorescent protein (GFP) fusion protein containing the FAT sequence delayed cell spreading and reduced FAK tyrosine phosphorylation. This indicates that the FAT sequence is the major inhibitory moiety within FRNK.  相似文献   

3.
The interaction of endothelial cells with extracellular matrix proteins at focal adhesions sites contributes to the integrity of vascular endothelial barrier. Although focal adhesion kinase (FAK) activation is required for the recovery of the barrier function after increased endothelial junctional permeability, the basis for the recovery remains unclear. We tested the hypothesis that FAK activates p190RhoGAP and, thus, negatively regulates RhoA activity and promotes endothelial barrier restoration in response to the permeability-increasing mediator thrombin. We observed that thrombin caused a transient activation of RhoA but a more prolonged FAK activation temporally coupled to the recovery of barrier function. Thrombin also induced tyrosine phosphorylation of p190RhoGAP, which coincided with decrease in RhoA activity. We further showed that FAK was associated with p190RhoGAP, and importantly, recombinant FAK phosphorylated p190RhoGAP in vitro. Inhibition of FAK by adenoviral expression of FRNK (a dominant negative FAK construct) in monolayers prevented p190RhoGAP phosphorylation, increased RhoA activity, induced actin stress fiber formation, and produced an irreversible increase in endothelial permeability in response to thrombin. We also observed that p190RhoGAP was unable to attenuate RhoA activation in the absence of FAK activation induced by FRNK. The inhibition of RhoA by the C3 toxin (Clostridium botulinum toxin) restored endothelial barrier function in the FRNK-expressing cells. These findings in endothelial cells were recapitulated in the lung microcirculation in which FRNK expression in microvessel endothelia increased vascular permeability. Our studies demonstrate that FAK-induced down-modulation of RhoA activity via p190RhoGAP is a crucial step in signaling endothelial barrier restoration after increased endothelial permeability.  相似文献   

4.
Integrin binding to matrix proteins such as fibronectin (FN) leads to formation of focal adhesion (FA) cellular contact sites that regulate migration. RhoA GTPases facilitate FA formation, yet FA-associated RhoA-specific guanine nucleotide exchange factors (GEFs) remain unknown. Here, we show that proline-rich kinase-2 (Pyk2) levels increase upon loss of focal adhesion kinase (FAK) in mouse embryonic fibroblasts (MEFs). Additionally, we demonstrate that Pyk2 facilitates deregulated RhoA activation, elevated FA formation, and enhanced cell proliferation by promoting p190RhoGEF expression. In normal MEFs, p190RhoGEF knockdown inhibits FN-associated RhoA activation, FA formation, and cell migration. Knockdown of p190RhoGEF-related GEFH1 does not affect FA formation in FAK−/− or normal MEFs. p190RhoGEF overexpression enhances RhoA activation and FA formation in MEFs dependent on FAK binding and associated with p190RhoGEF FA recruitment and tyrosine phosphorylation. These studies elucidate a compensatory function for Pyk2 upon FAK loss and identify the FAK–p190RhoGEF complex as an important integrin-proximal regulator of FA formation during FN-stimulated cell motility.  相似文献   

5.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

6.
Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.  相似文献   

7.
The Rho family GTPases RhoA (Rho), Rac1, and Cdc42 are essential effectors of integrin-mediated cell attachment and spreading. Rho activity, which promotes formation of focal adhesions and actin stress fibers, is inhibited upon initial cell attachment to allow sampling of the new adhesive environment. The Abl-related gene (Arg) tyrosine kinase mediates adhesion-dependent inhibition of Rho through phosphorylation and activation of the Rho inhibitor p190RhoGAP-A (p190). p190 phosphorylation promotes its binding to p120RasGAP (p120). Here, we elucidate the mechanism by which p120 binding regulates p190 activation after adhesion. We show that p190 requires its p120-binding domain to undergo Arg-dependent activation in vivo. However, p120 binding does not activate p190RhoGAP activity in vitro. Instead, activation of p190 requires recruitment to the cell periphery. Integrin-mediated adhesion promotes relocalization of p190 and p120 to the cell periphery in wild-type fibroblasts, but not in arg(-/-) fibroblasts. A dominant-negative p120 fragment blocks p190:p120 complex formation, prevents activation of p190 by adhesion, and disrupts the adhesion-dependent recruitment of p190 to the cell periphery. Our results demonstrate that integrin signaling through Arg activates p190 by promoting its association with p120, resulting in recruitment of p190 to the cell periphery where it inhibits Rho.  相似文献   

8.
Focal adhesion kinase (FAK) was first identified as a viral Src (v-Src) substrate, but the role of FAK in Src transformation events remains undefined. We show that stable expression of the FAK C-terminal domain (termed FRNK) in v-Src-transformed NIH 3T3 fibroblasts inhibited cell invasion through Matrigel and blocked experimental metastases in nude mice without effects on cell motility. FRNK inhibitory activity was dependent upon its focal contact localization. FRNK expression disrupted the formation of a v-Src-FAK signaling complex, inhibited p130Cas tyrosine phosphorylation, and attenuated v-Src-stimulated ERK and JNK kinase activation. However, FRNK did not affect v-Src-stimulated Akt activation, cell growth in soft agar, or subcutaneous tumor formation in nude mice. FRNK-expressing cells exhibited decreased matrix metalloproteinase-2 (MMP-2) mRNA levels and MMP-2 secretion. Transient FRNK expression in human 293 cells inhibited exogenous MMP-2 promoter activity and overexpression of wild-type but not catalytically-inactive (Ala-404) MMP-2 rescued v-Src-stimulated Matrigel invasion in the presence of FRNK. Our findings show the importance of FAK in Src-stimulated cell invasion and support a role for Src-FAK signaling associated with elevated tumor cell metastases.  相似文献   

9.
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.  相似文献   

10.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2–Sos complex. Since Grb2–Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a β1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

11.
Cadherin engagement inhibits RhoA via p190RhoGAP   总被引:9,自引:0,他引:9  
Cadherins are transmembrane receptors that mediate cell-cell adhesion in epithelial cells. A number of changes occur during cadherin-mediated junction formation, one of which is a rearrangement of the actin cytoskeleton. Key regulators of actin cytoskeletal dynamics in cells are the Rho family of GTPases. We have demonstrated in previous studies that cadherin signaling suppresses RhoA activity and activates Rac1. The signaling events downstream of cadherins that modulate the activity of Rho family proteins remain unknown. Here we have identified a pathway by which RhoA becomes inactivated by cadherins. To determine whether cadherins regulate RhoA through activation of a GTPase-activating protein (GAP) for RhoA, we used constitutively active RhoA to isolate activated GAPs. Using this assay, we have identified the RhoA-specific GAP, p190RhoGAP, downstream from engaged cadherins. We found that cadherin engagement induced tyrosine phosphorylation of p190RhoGAP and increased its binding to p120RasGAP. The increased precipitation of p190RhoGAP with 63LRhoA was blocked by addition of PP2 suggesting that Src family kinases are required downstream from cadherin signaling. The inhibition of RhoA activity by cadherins was antagonized by expression of a dominant negative p190RhoGAP. Taken together, these data demonstrate that p190RhoGAP activity is critical for RhoA inactivation by cadherins.  相似文献   

12.
Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.  相似文献   

13.
Focal adhesion kinase (FAK) is a regulator of numerous adhesion-dependent processes including cell migration, cell proliferation, and cell survival. The C-terminal domain of FAK, FAK-related nonkinase (FRNK), is autonomously expressed and functions as an inhibitor of FAK signaling. Previous attempts to use FRNK as a tool to dissect FAK signaling have been limited because of an inability to temporally regulate the inhibitory functions of FRNK. In this report, we describe and characterize a conditionally targeted form of FRNK that was created by fusing the hormone-binding domain of the estrogen receptor (ER*) to the C-terminus of FRNK. In the absence of added hormone, FRNK-ER* was diffusely distributed throughout the cytoplasm of cells. Upon addition of hormone, the cytoplasmic pool of FRNK-ER* was rapidly redistributed to focal adhesions. We demonstrate that cells expressing FRNK-ER* show a hormone-dependent decrease in FAK tyrosine phosphorylation and cell migration. Furthermore, when cells expressing of FRNK-ER* were treated with hormone, the cells responded with a dramatic change in cell morphology, suggesting a role for FAK in the regulation of the adhesive properties of focal adhesions.  相似文献   

14.
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.  相似文献   

15.
The focal adhesion (FAK) non-receptor protein-tyrosine kinase (PTK) links both extracellular matrix/integrin and growth factor stimulation to intracellular signals promoting cell migration. Here we show that both transient and stable overexpression of the FAK C-terminal domain termed FRNK (FAK-related non-kinase) inhibits serum and platelet-derived growth factor (PDGF)-BB-induced vascular smooth muscle cell (SMC) migration in wound healing and in vitro Boyden Chamber chemotaxis assays, respectively. Expression of FRNK, but not a point mutant of FRNK (FRNK L1034S), disrupted the formation of a complex containing both FAK and the activated PDGF-beta receptor and resulted in reduced tyrosine phosphorylation of endogenous FAK at the Tyr-397 binding site for Src family PTKs. As demonstrated using FAK-deficient and FAK-reconstituted fibroblasts, FAK positively contributed to PDGF-BB-stimulated ERK2/MAP kinase activity, and in SMCs, ERK2/MAP kinase activity was required for PDGF-BB-stimulated chemotaxis. Stable expression of FRNK but not FRNK L1034S expression in SMCs lowered the extent and duration of stimulated ERK2/MAP kinase activation at low but not at high PDGF-BB concentrations. Importantly, stable expression of FRNK in SMCs did not affect SMC morphology or proliferation in culture. Because the increased migration of vascular SMCs in response to extracellular matrix proteins and growth factors contributes to neointima formation, our results show that FAK inhibition by FRNK expression may provide a novel approach to regulate abnormal vascular SMC migration in vivo.  相似文献   

16.
The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279–1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells.  相似文献   

17.
The integrin family of cell surface receptors mediates cell adhesion to components of the extracellular matrix (ECM). Integrin engagement with the ECM initiates signaling cascades that regulate the organization of the actin-cytoskeleton and changes in gene expression. The Rho subfamily of Ras-related low-molecular-weight GTP-binding proteins and several protein tyrosine kinases have been implicated in mediating various aspects of integrin-dependent alterations in cell homeostasis. Focal adhesion kinase (FAK or pp125FAK) is one of the tyrosine kinases predicted to be a critical component of integrin signaling. To elucidate the mechanisms by which FAK participates in integrin-mediated signaling, we have used expression cloning to identify cDNAs that encode potential FAK-binding proteins. We report here the identification of a cDNA that encodes a new member of the GTPase-activating protein (GAP) family of GTPase regulators. This GAP, termed Graf (for GTPase regulator associated with FAK), binds to the C-terminal domain of FAK in an SH3 domain-dependent manner and preferentially stimulates the GTPase activity of the GTP-binding proteins RhoA and Cdc42. Subcellular localization studies using Graf-transfected chicken embryo cells indicates that Graf colocalizes with actin stress fibers, cortical actin structures, and focal adhesions. Graf mRNA is expressed in a variety of avian tissues and is particularly abundant in embryonic brain and liver. Graf represents the first example of a regulator of the Rho family of small GTP-binding proteins that exhibits binding to a protein tyrosine kinase. We suggest that Graf may function to mediate cross talk between the tyrosine kinases such as FAK and the Rho family GTPase that control steps in integrin-initiated signaling events.  相似文献   

18.
19.
The localization of focal adhesion kinase (FAK) to sites of integrin clustering initiates downstream signaling. The C-terminal focal adhesion targeting (FAT) domain causes this localization by interacting with talin and paxillin. FAT also mediates signaling through Grb2 via phosphorylated Y925. We report two crystal structures of the FAT domain. Large rearrangements of the structure are indicated to allow phosphorylation of Y925 and subsequent interaction with Grb2. Sequence homology and structural compatibility suggest a FAT-like fold for the C-terminal domains of CAS, Efs/Sin, and HEF1. A structure-based alignment including these proteins and the vinculin tail domain reveals a conserved region that could play a role in focal adhesion targeting. Previously postulated "paxillin binding subdomains" may contribute to structural integrity rather than directly to paxillin binding.  相似文献   

20.
The carboxy-terminal 150 residues of the focal adhesion kinase (FAK) comprise the focal adhesion-targeting sequence, which is responsible for its subcellular localization. The mechanism of focal adhesion targeting has not been fully elucidated. We describe a mutational analysis of the focal adhesion-targeting sequence of FAK to further examine the mechanism of focal adhesion targeting and explore additional functions encoded by the carboxy-terminus of FAK. The results demonstrate that paxillin binding is dispensable for focal adhesion targeting of FAK. Cell adhesion-dependent tyrosine phosphorylation strictly correlated with the ability of mutants to target to focal adhesions. Focal adhesion targeting was also a requirement for maximal FAK-dependent tyrosine phosphorylation of paxillin and FAK-related nonkinase (FRNK)-dependent inhibition of endogenous FAK function. However, there were additional requirements for these latter functions because we identified mutants that target to focal adhesions, yet are defective for the induction of paxillin phosphorylation or the dominant-negative function of FRNK. Furthermore, the paxillin-binding activity of FRNK mutants did not correlate with their ability to inhibit FAK, suggesting that FRNK has other targets in addition to paxillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号