首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the relationship between the flux of heat and water within the respiratory tract during exercise and recovery to the development of exercise-induced asthma (EIA), we recorded airstream temperature at multiple points throughout the tracheobronchial tree in 10 normal and 10 asthmatic subjects before, during, and after cycle ergometry. In both groups, the intra-airway temperature fell progressively as ventilation increased, and there were no significant differences between the thermal profiles of the two populations at rest or during exercise. Calculation of water losses and the osmolality of the airway surface fluid failed to demonstrate significant airway drying in either group. With cessation of the work load, the airstream temperature increased abruptly, rising two times more rapidly in the asthmatics than the normals. Since the major source of heat in these experiments is the bronchial circulation, our findings suggest a reaction sequence consisting of vasoconstriction and airway cooling during exercise followed by a rapid resupply of heat when exercise ceases. The latter may cause the hyperplastic capillary bed in the airways of asthmatics to develop an exaggerated rebound hyperemia which may lead to airway edema and EIA.  相似文献   

2.
3.
A comparison was made between airways obstruction produced by exercise. Hyperventilation of cold air, hyperventilation of room air, and inhalation of ultrasonically nebulised distilled water. Seven asthmatics with no airflow obstruction were studied together with seven normal controls. All four provocations produced comparable mean reductions in forced expired volume in one second in the asthmatic patients, but no reduction was obtained in the controls. Whereas exercise, hyperventilation of cold air, and hyperventilation of room air were associated with heat loss from airways, inhalation of nebulised distilled water was not. Inhalation of ultrasonically nebulised distilled water offers a simple additional diagnostic test for asthma. Changes in the osmolality of airway surface liquid may possibly be the common mechanism by which "fog" and hyperventilation produce bronchoconstruction.  相似文献   

4.
We developed and tested a method, based on conduction heat transfer analysis, to infer airway mucosal temperatures from airstream temperature-time profiles during breath-hold maneuvers. The method assumes that radial conduction of heat from the mucosal wall to inspired air dominates heat exchange during a breath-hold maneuver and uses a simplified conservation of energy analysis to extrapolate wall temperatures from air temperature vs. time profiles. Validation studies were performed by simultaneously measuring air and wall temperatures by use of a retractable basket probe in the upper airways of human volunteers and intrathoracic airways of paralyzed intubated dogs during breath holding. In both protocols, a good correlation was demonstrated between directly measured wall temperatures and those calculated from adjacent airstream temperature vs. time profiles during a breath hold. We then calculated intrathoracic bronchial wall temperatures from breath-hold airstream temperature-time profiles recorded in normal human subjects after cold air hyperpnea at 30 and 80 l/min. The calculations show airway wall temperatures in the upper intrathoracic airways that are below core body temperature during hyperpnea of frigid air and upper thoracic airways that are cooler than more peripheral airways. The data suggest that the magnitude of local intrathoracic heat/water flux is not represented by heat/water loss measurements at the airway opening. Both the magnitude and locus of heat transport during cold gas hyperventilation vary with changes in inspired gas temperature and minute ventilation; both may be important determinants of airway responses.  相似文献   

5.
We have previously observed that although atropine does not alter the magnitude of the response to exercise while breathing cold air, it does cause the predominant site of obstruction to move into the lung periphery. To determine if this effect was due to changes in the conditioning of inspired air, we measured respiratory heat loss (RHL) and retrotracheal (Trt) and retrocardiac esophageal temperature in eight asthmatics while they performed eucapnic hyperventilation with cold air before and after the inhalation of atropine. Multiple aspects of pulmonary mechanics were also recorded. Significant and equivalent airway obstruction developed with and without atropine (control delta FEV1 = 1.0 +/- 0.2 (SE) liter; postatropine = 0.9 +/- 0.3 liter). Despite this, RHL was 17.1% greater and Trt fell 16% more after atropine. These data demonstrate that atropine can influence heat transfer within the lung and alter the sites of conditioning.  相似文献   

6.
Finite difference analysis of respiratory heat transfer   总被引:2,自引:0,他引:2  
A numerical computer model of heat and water transfer within the tracheobronchial tree of humans was developed based on an integral formulation of the first law of thermodynamics. Simulation results were compared with directly measured intraluminal airway temperature profiles previously obtained in normal human subjects, and a good correlation was demonstrated. The model was used to study aspects of regional pulmonary heat transfer and to predict the outcomes of experiments not yet performed. The results of these simulations show that a decrease in inspired air temperature and water content at fixed minute ventilation produces a proportionately larger increase in heat loss from extrathoracic airways relative to intrathoracic, whereas an increase in minute ventilation at fixed inspired air conditions produces the opposite pattern, with cold dry air penetrating further into the lung, and that changes in breathing pattern (tidal volume and frequency) at fixed minute ventilation and fixed inspiratory-to-expiratory (I/E) ratio do not affect local air temperature profiles and heat loss, whereas changes in I/E ratio at fixed minute ventilation do cause a significant change.  相似文献   

7.
Intravenous capsaicin elicits the "pulmonary chemoreflex" (apnea, bradycardia, and hypotension) presumably through the stimulation of "pulmonary C-fibers." The present study was designed to ascertain whether tracheobronchial C-fibers play a role in the above reflex response. We compared the effects of capsaicin injected intravenously, administered as an aerosol, and administered topically into the intrathoracic trachea in anesthetized dogs (n = 17) and rats (n = 17). We measured esophageal, subglottic, and arterial pressures together with abdominal muscle electromyogram. Changes in expiratory duration [(TE), measured as the ratio TEtest to TEcontrol, mean +/- SD] due to capsaicin were similar with all three routes of administration in both dogs (intravenous, 7.9 +/- 4.6; aerosol, 5.5 +/- 3.1; topically into intrathoracic trachea, 7.1 +/- 4.8) and rats (intravenous, 22.6 +/- 10.3; aerosol, 11.1 +/- 8.2; topically into intrathoracic trachea, 21.6 +/- 4.6). An increase in laryngeal resistance was a constant finding in the rat, but it was less frequent in the dog. Cardiovascular responses consisting of bradycardia and hypotension occurred with all three routes of administration but had longer delays than the respiratory responses. Capsaicin instillation into the extrathoracic trachea in dogs (n = 7) also induced qualitatively similar cardiorespiratory responses. We conclude that 1) capsaicin-sensitive receptors are accessible from both the pulmonary circulation and the airway lumen and 2) afferents, even in the extrapulmonary portion of the tracheobronchial tree, can play a role in the reflex responses to intraluminal capsaicin.  相似文献   

8.
Longitudinal distribution of canine respiratory heat and water exchanges   总被引:1,自引:0,他引:1  
We assessed the longitudinal distribution of intra-airway heat and water exchanges and their effects on airway wall temperature by directly measuring respiratory fluctuations in airstream temperature and humidity, as well as airway wall temperature, at multiple sites along the airways of endotracheally intubated dogs. By comparing these axial thermal and water profiles, we have demonstrated that increasing minute ventilation of cold or warm dry air leads to 1) further penetration of unconditioned air into the lung, 2) a shift of the principal site of total respiratory heat loss from the trachea to the bronchi, and 3) alteration of the relative contributions of conductive and evaporative heat losses to local total (conductive plus evaporative) heat loss. These changes were not accurately reflected in global measurements of respiratory heat and water exchange made at the free end of the endotracheal tube. Raising the temperature of inspired dry air from frigid to near body temperature principally altered the mechanism of airway cooling but did not influence airway mucosal temperature substantially. When local heat loss was increased from both trachea and bronchi (by increasing minute ventilation), only the tracheal mucosal temperature fell appreciably (up to 4.0 degrees C), even though the rise in heat loss from the bronchi about doubled that in the trachea. Thus it appears that the bronchi are better able to resist changes in airway wall temperature than is the trachea. These data indicate that the sites, magnitudes, and mechanisms of respiratory heat loss vary appreciably with breathing pattern and inspired gas temperature and that these changes cannot be predicted from measurements made at the mouth. In addition, they demonstrate that local heat (and presumably, water) sources that replenish mucosal heat and water lost to the airstream are important in determining the degree of local airway cooling (and presumably, drying).  相似文献   

9.
Application of respiratory heat exchange for the measurement of lung water.   总被引:2,自引:0,他引:2  
A noninvasive method for measuring pulmonary blood flow and lung mass (called airway thermal volume), based on the measurements of lung heat exchange with environment, is described. The lungs function as a steady-state heat exchange system, having an inner heat source (pulmonary blood flow) and an external heat sink (ventilation). Sudden changes in the steady-state condition, such as caused by hyperventilation of dry air, lead to a new steady state after a few minutes. The expired air temperature difference between the initial and final steady states is proportional to pulmonary blood flow, whereas the rate at which the new steady state is achieved is proportional to airway thermal volume. The method was tested in 20 isolated dogs lungs, 9 perfused goat lungs, and 27 anesthetized sheep. The expired air temperature fall during hyperventilation was inversely proportional to the perfusion rate of the isolated lungs, and half-time of the temperature fall was proportional to the lung tissue mass. Experiments in anesthetized sheep showed that the measured airway thermal volume is close to the total mass of the excised lungs, including its residual blood (r = 0.98). Pulmonary edema and fluid instillation into the bronchial tree increased in the measured lung mass.  相似文献   

10.
To determine the relative contributions of direct airway vs. reflex cutaneous thermal receptor stimulation in cold-induced bronchoconstriction, we isolated these two aspects of cold exposure in 10 asthmatics and 13 normal subjects. Ice packs were applied to the skin of the face, chest, thigh, and upper arm in random sequence while serially measuring specific conductance. In this fashion a limited mapping of skin-mediated bronchoconstriction was established. Warm packs were applied to the same areas of control for any potential nonspecific stimulatory effects. Cooling the skin induced bronchoconstriction to a similar degree in both groups; this effect was very small, did not induce symptoms, and was only seen with stimulation of the face. At another time, the subjects performed isocapnic hyperventilation of frigid air to ascertain their response to direct airway cooling. A moderate but significant correlation existed between skin and airway sensitivity; however, the magnitude of the two responses differed markedly. Breathing cold air at rest had no effect on lung function; however, elevating ventilation promptly produced bronchial narrowing. Hence, in a cold environment, the most potent stimulus for the development of airway obstruction in asthmatics derives from a direct airway effect.  相似文献   

11.
To determine whether there are distinctions in the location and pattern of response between different bronchoprovocations, we performed high-resolution computer-assisted tomography in 10 asthmatic subjects before and after isocapnic hyperventilation of frigid air (HV) and methacholine (Meth). The luminal areas of the trachea, main stem, lobar, and segmental bronchi were computed before and after each provocation and blindly compared. Both stimuli reduced the 1-s forced expiratory volume similarly (percent change in 1-s forced expiratory volume HV = 28.1 +/- 5.5%, Meth = 25.8 +/- 5.2%; P = 0.69) but did so in different fashions. Each provocation was associated with the development of both bronchial narrowing and dilation; however, more airways constricted with HV (67.7%) than with Meth (47.0%; P < 0.001). Furthermore, there was little concordance between either the magnitude or direction of change between stimuli in any region of the lung (r = 0.25). In general, the frequency of narrowing increased with branching. Constriction became more prominent in the lobar regions and increased further in the segmental branches, but a wide range of intensity existed. These data demonstrate that provocational stimuli evoke complex morphometric changes within the tracheobronchial tree and that different agonists produce different patterns. Thermal stimuli chiefly influence the segmental level, whereas the response to Meth develops more distally. Even within this distribution, the same airway does not respond in an identical fashion to different stimuli, so there does not appear to be a uniform trigger zone.  相似文献   

12.
Panting is a controlled increase in respiratory frequency accompanied by a decrease in tidal volume, the purpose of which is to increase ventilation of the upper respiratory tract, preserve alveolar ventilation, and thereby elevate evaporative heat loss. The increased energy cost of panting is offset by reducing the metabolism of nonrespiratory muscles. The panting mechanism tends to be important in smaller mammalian species and in larger species is supplemented by sweating. At elevated respiratory frequencies and body temperatures alveolar hyperventilation begins to develop but is accompanied by a decline in the control of carbon dioxide partial pressure in arterial blood, probably through central chemoreceptors. Most heat exchange takes place at the nasal epithelial lining, and venous drainage can be directed to a special network of arteries at the base of the brain whereby countercurrent heat transfer can occur, which results in selective brain cooling. Such a phenomenon has also been suggested in nonpanting species, including humans, and although originally thought to be a mechanism for protecting the thermally vulnerable brain is now considered to be one of the thermoregulatory reflexes whereby respiratory evaporation can be closely controlled in the interests of thermal homeostasis.  相似文献   

13.
To investigate whether exercise increases the responsivity of the tracheobronchial tree to nonspecific stimuli, 11 atopic asthmatics underwent serial challenges with aerosolized methacholine before and 4 and 24 h after an asthma attack induced by cycle ergometry while breathing cold air (mean +/- SE = -11 +/- 1 degree C). Bronchodilator therapy was withheld the day before and throughout each study day. There were no significant differences in base-line lung function before exercise or any of the three methacholine bronchoprovocations. Exercise produced a 25 +/- 3% maximal fall in 1-s forced expiratory volume (FEV1) within 15 min. This attack was not associated with either an immediate or a delayed increase in methacholine sensitivity. The provocation concentration of methacholine required to reduce the FEV1 20% from saline control at base line and 4 and 24 h after exercise were 0.8 +/- 0.5, 0.9 +/- 0.5, and 1.1 +/- 0.8 mg/ml, respectively. This was not significant by a one-way analysis of variance (F = 0.078, P = NS). These data demonstrate that exercise-induced asthma does not produce an increase in nonspecific bronchial reactivity. Hence, if mediators are elaborated with exercise as has been suggested, they appear to function differently than when released by antigen.  相似文献   

14.
A steady-state, one-dimensional theoretical model of human respiratory heat and water vapor transport is developed. Local mass transfer coefficients measured in a cast replica of the upper respiratory tract are incorporated into the model along with heat transfer coefficients determined from the Chilton-Colburn analogy and from data in the literature. The model agrees well with reported experimental measurements and predicts that the two most important parameters of the human air-conditioning process are: the blood temperature distribution along the airway walls, and the total cross-sectional area and perimeter of the nasal cavity. The model also shows that the larynx and pharynx can actually gain water over a respiratory cycle and are the regions of the respiratory tract most subject to drying. With slight modification, the model can be used to investigate respiratory heat and water vapor transport in high stress environments, pollutant gas uptake in the respiratory tract, and the connection between respiratory air-conditioning and the function of the mucociliary escalator.  相似文献   

15.

Background

Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs.

Methods

We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP).

Results

Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways.

Conclusions

Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.  相似文献   

16.
This study was undertaken to determine if patients who lack muscle phosphorylase (i.e., McArdle's disease), and therefore the ability to produce lactic acid during exercise, demonstrate a normal hyperventilatory response during progressive incremental exercise. As expected these patients did not increase their blood lactate above resting levels, whereas the blood lactate levels of normal subjects increased 8- to 10-fold during maximal exercise. The venous pH of the normal subjects decreased markedly during exercise that resulted in hyperventilation. The patients demonstrated a distinct increase in ventilation with respect to O2 consumption similar to that seen in normal individuals during submaximal exercise. However their hyperventilation resulted in an increase in pH because there was no underlying metabolic acidosis. End-tidal partial pressures of O2 and CO2 also reflected a distinct hyperventilation in both groups at approximately 70-85% maximal O2 consumption. These data show that hyperventilation occurs during intense exercise, even when there is no increase in plasma [H+]. Since arterial CO2 levels were decreasing and O2 levels were increasing during the hyperventilation, it is possible that nonhumoral stimuli originating in the active muscles or in the brain elicit the hyperventilation observed during intense exercise.  相似文献   

17.
On the basis of Weibel respiratory tract model the mathematical model of mass and heat transfer in the lungs was solved for steady-state one-dimensional case. Coefficients of mass and heat transfer were taken from empirical expressions for canals. The model shows that independent water vapour or air heat saturation in the lungs occurs in 12-14 generations of the bronchial tree. The saturation site depends upon volume velocity of the air and functioning of the upper respiratory tract.  相似文献   

18.
1. The energy required for sustained physical activity in flying and running birds is obtained from fatty acids mobilized from adipose stores under the influence of hormones. There is some evidence that glucagon, insulin and growth hormone may be involved in this process. 2. Energy expenditure can increase up to 14 times and 12 times resting values in flying and running birds, respectively. Energy expenditure varies only slightly over the normal range of flight speeds in individual species, but in running birds there is a linear correlation between oxygen consumption and speed. The slope of this relationship is an inverse function of body weight and indicates the energy cost of transport in ml O2.kg-1.m-1. 3. Increased oxygen demands by the working muscles are met by increased ventilation and circulation. Increased oxygen delivery by the blood is achieved by rises in cardiac output and oxygen extraction. Cardiac stroke volume changes relatively little and the increased cardiac output results mainly from an increase in heart rate. Regional blood distribution during exercise may be determined not only by the demands of the locomotory muscles but also by the need to increase heat loss from the skin and respiratory tract. 4. Ventilatory movements during flight are frequently synchronized in a I:I fashion with wing movements. Increased ventilation during flight and running may be stimulated, not only by the need for increased gas exchange, but also in order to raise heat loss by respiratory evaporation. Thermal hyperventilation carries a risk of CO, washout from the lungs and consequent blood alkalosis. The risk is minimized in some species by appropriate alterations in the rate and depth of breathing, which help to confine excess ventilation to the respiratory dead space. 5. Metabolic heat produced during exercise is either lost from the respiratory linings and the skin, or stored by the body with a resultant rise in body temperature. Changes in peripheral blood perfusion and active regulation of the feathers may assist cutaneous heat loss. Respiratory evaporation usually accounts for less than 30% of the total heat loss, even at high air temperatures, and becomes progressively less efficient at higher exercise intensities. At high air temperatures and high exercise intensities, most of the metabolic heat is stored, and exercise duration is limited as the body temperature approaches the upper lethal limit.  相似文献   

19.
This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.  相似文献   

20.
S E Vernon 《Acta cytologica》1982,26(2):237-242
Herpesvirus infections of the lower respiratory tract have most commonly been reported in patients with severe burns, immunosuppression or malignancies. Two patients without any of these underlying conditions developed severe herpetic tracheobronchitis, diagnosed by cytologic examination and confirmed by serologic studies. Serial examination of sputum, bronchial brushings and bronchial washings permitted observation of the evolution and progression of cellular changes found in herpesvirus infection of the lower respiratory tract. both patients recovered without specific antiviral therapy, but both developed superinfection with gram-negative organisms, requiring intensive antibiotic therapy. The distinctive features of herpesvirus infection in the tracheobronchial tree are similar to those recognized elsewhere in the body. Early findings include a variety of nonspecific changes in nuclear chromatin configurations; multinucleated cells may be common but do not often contain the central intranuclear inclusion bodies seen in later stages. These distinctive central intranuclear inclusions disappear in a few days, leaving only reparative changes in the surface epithelium. Herpesviruses are increasingly being reported in the literature as an etiologic agent of acute tracheobronchitis in otherwise healthy individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号