首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies have shown the presence of a positive correlation between the infection of Schistosoma japonicum and colorectal and/or liver cancers in the humans. To explore the mechanism underlying this correlation, we have investigated the mutagen-activating potentials of the liver homogenate fraction (S9) from Schistosoma japonicum infected mice and those from control mice, by use of the Ames test with 2-acetylaminofluorene, aflatoxin B1 and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) as test mutagens. Liver S9 prepared from the infected group at the 15th week after the infection showed a potential significantly lower than that from the control group. The hepatic cytochrome P-450 concentration in the infected mice was persistently low, about a half of that in the uninfected mice, during the period of 6-18 weeks after the infection. Thus, in mice bearing chronic schistosomiasis, mutagen-processing potentials are decreased.  相似文献   

2.
Trp-P-2(3-amino-1-methyl-5H-pyrido [4,3-b] indole) ingestion for 42 d by C3H/HeJJcl mice caused elevation of serum alanine transaminase (ALT) activity and several signs of liver injury. These alterations were not observed in mice fed the diet supplemented with 10% miso. This suggests a preventive effect of miso as to Trp-P-2 induced liver injury.  相似文献   

3.
Early work from our laboratory has shown that the mutagenicity of heterocyclic amines in Salmonella can be inhibited by hemin and chlorophyllins. We have speculated that the inhibition is a result of complex formation between heterocyclic amines and the pigments, and the speculation has been given a line of experimental evidence. We have now found that ferric-chlorophyllin (Fe-chlorophyllin) can modify the mutagenicity of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NHOH)), a metabolically activated form of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). The mutagenicity of Trp-P-2(NHOH)) in Salmonella typhimurium TA 98 (without S9) was strongly inhibited by an addition of an equimolar Fe-chlorophyllin in the pre-incubation mixture. Fe-chlorophyllin also inhibited the mutagenicity of 2-hydroxyamino-6-methyldipyrido[1,2-a:3′,2′-d] imidazole (Glu-P-1(NHOH)). A rapid change in the UV spectrum of a mixture of Trp-P-2(NHOH) and Fe-chlorophyllin was observed. Analysis by high performance liquid chromatography showed that Trp-P-2(NHOH) was converted into 3-nitroso-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NO)), the mutagenic potency of which is a quarter of that of Trp-P-2(NHOH). Furthermore, the mutagenicity of Trp-P-2(NO), in turn, was inhibited by Fe-chlorophyllin. We conclude that the suppression of the mutagenicity of Trp-P-2(NHOH) is ascribable to the oxidative function of Fe-chlorophyllin, coupled with its ability to form complex formation with the planar surface of the heterocyclic amine molecules.  相似文献   

4.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

5.
S Manabe  O Wada 《Mutation research》1988,209(1-2):33-38
A high-performance liquid chromatography method for detecting 3-amino-1,4- dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in human plasma was developed. Plasma samples of 10 normal subjects were examined. Trp-P-1 and Trp-P-2, carcinogenic tryptophan pyrolysis products, were detected in all specimens, and the concentrations of Trp-P-1 and Trp-P-2 in plasma were 68.31 +/- 24.03 fmoles/ml (mean +/- S.D., n = 10) and 18.79 +/- 4.99 fmoles/ml, respectively. Our results suggest that plasma levels of carcinogenic tryptophan pyrolysis products may be useful indicators for estimating the exposure levels of the dietary carcinogens.  相似文献   

6.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

7.
S Manabe  E Uchino  O Wada 《Mutation research》1989,226(4):215-221
This is the first report that carcinogenic tryptophan pyrolysis products are present in airborne particles and rain water. The airborne particles were collected from August 1988 through October 1988 at 4 locations in Japan. The amounts of 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in the air were 0.23 +/- 0.17 pg/m3 air (mean +/- SD, n = 18) and 0.16 +/- 0.15 pg/m3 air (n = 18), respectively. Moreover, these carcinogens were detected in rain water. These results indicate that Trp-P-1 and Trp-P-2 are ubiquitous environmental components.  相似文献   

8.
The interactions between lipids and the mutagenic active metabolite of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-hydroxy-Trp-P-2), were studied. Oleic acid showed an inhibitory effect on the formation of this active metabolite mainly by inhibition of hepatic microsomal oxidation systems. On the other hand, microsomal lipids from rat liver and commercial pig liver lecithin diminished the amount of N-hydroxy-Trp-P-2 without inhibiting the metabolism of Trp-P-2. The direct reaction of these lipids with N-hydroxy-Trp-P-2 was disclosed by experiments using N-hydroxy-Trp-P-2 and lipids without microsomes. Furthermore, the participation of lipid peroxides in this reaction was suggested by a linear relationship between the concentrations of the conjugated diene of lipids and the disappearance of N-hydroxy-Trp-P-2. When [3H]N-hydroxy-Trp-P-2 was incubated in the presence of pig liver lecithin, the polar products which were not formed in the incubation without lipids were newly detected by thin-layer chromatography (TLC) analysis.  相似文献   

9.
Purified human red blood cell cytosol was used to activate the heterocyclic amines 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) into mutagenic intermediate(s) in the Salmonella test. The liquid preincubation method in the presence of strain TA98 was utilized. In order to understand the mechanism involved in this metabolic activation, some modulators were incorporated in the medium. The results suggest that an oxygenated hemoprotein, probably oxyhemoglobin, is involved in the activation into genotoxic intermediate(s).  相似文献   

10.
Shishu  A.K. Singla  I.P. Kaur 《Phytomedicine》2003,10(6-7):575-582
Dibenzoylmethane (DBM), a structural analogue of curcumin (a bioactive phytochemical present in a widely used spice turmeric) was screened for its inhibitory effect against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor1254-induced rat liver S9 homogenate. DBM has been reported to antagonize the mutagenicity of several chemical carcinogens in vitro and has recently been shown to be even more effective than curcumin in suppressing the 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors in rats. But there are no reports regarding its antimutagenic properties against cooked food mutagens. Results of the present investigations clearly indicate that dibenzoylmethane is a very potent antimutagenic agent, that could effectively inhibit mutagenicity induced by all the tested cooked food mutagens in both the frame shift (TA98) as well as the base pair mutation sensitive (TA100) strains of S. typhimurium. These highly potent inhibitory effects of dibenzoylmethane against heterocyclic amines observed in our preliminary investigations strongly warrant further studies of its efficacy as a cancer chemopreventive agent.  相似文献   

11.
Out of carcinogenic heterocyclic amines, which are produced by pyrolysis of tryptophan in food, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) were found to reduce the activity of enzymes related to catecholamine metabolism in clonal rat pheochromocytoma PC12h cells. By 6 days' culture in the presence of 10 nM to 10 microM Typ-P-1 and -2, these heterocyclic amines were accumulated in the cells, and activity of tyrosine hydroxylase (TH) and aromatic L-aminoacid decarboxylase (AADC) were reduced markedly. Reduction of these enzyme activity was observed with Trp-P-1 and -2 at the concentrations lower than 1 microM, while cell protein and enzyme activity of a non-specific enzyme, beta-galactosidase were reduced only with 10 microM Trp-P-1. These results show that these heterocyclic amines are neurotoxins specific for dopaminergic neurons.  相似文献   

12.
Heterocyclic aromatic amines (HAAs) are produced during cooking of proteinaceous food such as meat and fish. Humans eating a normal diet are regularly exposed to these food-borne substances. HAAs have proved to be carcinogenic in animals and to induce early lesions in the development of cancer. DNA adduct levels in mouse liver have been measured by 32P-HPLC after oral administration each of 14 different HAAs. The highest DNA adduct levels were detected for 3-amino-1-methyl-5H-pyrido[4,3-b]-indole (Trp-P-2), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AalphaC), respectively. To assess a relative risk in a human population, a relative risk index was calculated by combining the DNA adduct levels in mouse liver with human daily intake of heterocyclic amines in a US and in a Swedish population. Such calculations suggest that AalphaC presents the highest risk for humans, e.g. nine-fold higher compared with the most abundant amines in food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP). Therefore, the distribution of DNA adducts in different tissues of mouse was investigated after oral administration of AalphaC. The highest AalphaC-DNA adduct levels were found in liver (137 adducts/10(8) normal nucleotides) followed by heart, kidney, lung, large intestine, small intestine, stomach and spleen, in descending order. To characterize the chemical structure of the major DNA adduct, chemical synthesis was performed. The major DNA adduct from the in vivo experiments was characterized by five different methods. On the basis of these results, the adduct was characterized as N2-(deoxyguanin-8-yl)-2-amino-9H-pyrido [2,3-b]indole. Considering the abundance of AalphaC not only in grilled meat, but also in other products like grilled chicken, vegetables and cigarette smoke and in light of the results of the present study, it is suggested that the human cancer risk for AalphaC might be underestimated.  相似文献   

13.
In order to estimate the exposure levels of mutagenic and carcinogenic heterocyclic amines in humans, we developed a high-performance liquid chromatography method to detect 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in dialysis fluid of patients with uremia. Using this methods, dialysis fluid of 12 patients who had received hemodialysis treatment or continuous ambulatory peritoneal dialysis was examined. Trp-P-1 was detected in dialysate of all uremic patients (727 +/- 282 pmoles, n = 12). In patients who had been treated with continuous ambulatory peritoneal dialysis, the average amount of Trp-P-1 found in whole dialysate (6 l) per day was 710 +/- 203 pmoles (mean +/- S.D., n = 8). Moreover, Trp-P-2 could be detected in 5 out of 12 patients (206 +/- 85 pmoles, n = 5). These results indicate that patients with uremia are actually exposed to carcinogenic tryptophan pyrolysis products. The average exposure level of Trp-P-1 in uremic patients apparently exceeded 710 pmoles (150 ng) per day.  相似文献   

14.
The binding of mutagenic pyrolyzates to cell fractions from some gram-negative intestinal bacteria and to thermally treated bacterial cells was investigated. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) were effectively bound by several of the bacterial cells. The cell wall skeletons of all bacteria effectively bound Trp-P-1 and Trp-P-2. Their cytoplasmic fractions retained Trp-P-1 and Trp-P-2, but to a lesser extent than the cell wall skeletons. 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) was not found in their cytoplasmic fractions. These cell wall skeletons also bound 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), 2-amino-5-phenylpyridine (Phe-P-1), IQ, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQX). The amount of each mutagen bound differed with the type of mutagen and the bacterial strain used. The outer membrane of Escherichia coli IFO 14249 showed binding of about 123.7 micrograms/mg of Trp-P-2, and its cytoplasmic membrane bound 57.14 micrograms/mg. Trp-P-2 bound to the bacterial cells was extracted with ammonia (5%), methanol, and ethanol but not with water.  相似文献   

15.
Heterocyclic aromatic amines (HAAs) are produced during cooking of proteinaceous food such as meat and fish. Humans eating a normal diet are regularly exposed to these food-borne substances. HAAs have proved to be carcinogenic in animals and to induce early lesions in the development of cancer. DNA adduct levels in mouse liver have been measured by 32P-HPLC after oral administration each of 14 different HAAs. The highest DNA adduct levels were detected for 3-amino-1-methyl-5H-pyrido[4,3-b]-indole (Trp-P-2), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AαC), respectively. To assess a relative risk in a human population, a relative risk index was calculated by combining the DNA adduct levels in mouse liver with human daily intake of heterocyclic amines in a US and in a Swedish population. Such calculations suggest that AαC presents the highest risk for humans, e.g. nine-fold higher compared with the most abundant amines in food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP). Therefore, the distribution of DNA adducts in different tissues of mouse was investigated after oral administration of AαC. The highest AαC–DNA adduct levels were found in liver (137 adducts/108 normal nucleotides) followed by heart, kidney, lung, large intestine, small intestine, stomach and spleen, in descending order. To characterize the chemical structure of the major DNA adduct, chemical synthesis was performed. The major DNA adduct from the in vivo experiments was characterized by five different methods. On the basis of these results, the adduct was characterized as N2-(deoxyguanin-8-yl)-2-amino-9H-pyrido[2,3-b]indole. Considering the abundance of AαC not only in grilled meat, but also in other products like grilled chicken, vegetables and cigarette smoke and in light of the results of the present study, it is suggested that the human cancer risk for AαC might be underestimated.  相似文献   

16.
Curcumin (C) and its natural analogues demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC), known for their potent anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic effects, were tested for their possible inhibitory effects against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor induced rat liver S9 homogenate. In the present investigations, curcumin as well as its two natural analogues i.e., dmC and bdmC were found to be highly effective in suppressing genotoxicity of all the tested cooked food mutagens in a dose-dependent manner, in both the frame shift (TA98) as well as base pair mutation sensitive (TA100) strains of S. typhimurium. However, bdmC appeared to be a relatively less active antimutagen compared to C and dmC. More than 80% inhibition of mutagenicity was observed at 200 microg/plate in case of C and dmC in both TA98 and TA100 against all tested cooked food mutagens. Where as, bdmC showed 39-79% inhibition in TA100 and 60-80% inhibition in TA98, at a dose of 200 microg/plate. These findings warrant further biochemical, enzymatic and in vivo investigations in animal models as well as in humans to establish the chemoprotective effect of these agents against mutagenic heterocyclic amines found in cooked food.  相似文献   

17.
A simple and rapid method is described for analyzing the Monascus pigment-mediated degradation of 3-hydroxyamino-1-methyl-5H-pyrido[4, 3-b]indole (Trp-P-2(NHOH)). We used the in-capillary micellar electrokinetic chromatography (MEKC). During the electrophoresis, the mutagen and the pigment, due to their different migration velocities, mix for a certain period of time to interact, and then they are separated and quantified. Using this technique, we were able to demonstrate that Trp-P-2(NHOH) is degraded by the pigment. The degradation was pigment-dose dependent, and because the pigment was recovered unchanged, it was deduced that the pigment acted catalytically for the degradation. The entire MEKC procedure takes 8 min.  相似文献   

18.
3-Amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), a mutagenic principle in tryptophan pyrolysates, binds to DNA after metabolic activation by rat liver enzymes. The enzymes for activation of Trp-P-2 were found in both microsomes and the cytosol. The reaction required NADPH and ATP, metabolic and was inhibited by 7,8-benzoflavone. Considerable binding was observed with only microsomes as enzyme source, but further addition of cytosol enhanced the binding, enhancement depending on the amount of cytosol added. Inducers for microsomal mixed-function oxidases induced activating enzyme(s) for Trp-P-2, 3-methylcholanthrene being most effective, followed by polychlorinated biphenyls and then phenobarbital.  相似文献   

19.
Developmental changes in hepatic activation of dietary mutagens by mice   总被引:1,自引:0,他引:1  
Metabolic activation of the food mutagens 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and aflatoxin B1 by female BALB/c mice of different ages (2-24 weeks) was investigated in vivo and in vitro using Salmonella typhimurium TA98 as the indicator organism. The in vivo activation of the three mutagens was investigated in 4- and 24-week-old mice using an intrasanguineous host-mediated assay. All three compounds showed reduced levels of activation with the older hosts. Hepatic S9 fractions from female mice of varying ages between 2 and 24 weeks were used in the in vitro mutagenicity assay. To achieve optimal activation to bacterial mutagens, 5% S9 was required for aflatoxin B1 and Trp-P-2 and 10% S9 for MeIQ; age of donor generally had little effect on the profile of these protein activation curves. Under these optimal conditions MeIQ and Trp-P-2 both exhibited, as before, age-dependent decreases in activation over a wide range of mutagen concentrations, however the in vitro activation of aflatoxin showed no consistent change with age. Spectrophotometric measurements of S9 cytochrome P-450 content showed a decrease in concentration with increasing age, but this was not sufficient to account for changes observed in hepatic mutagen activation. However, changes in the activities of certain cytochrome P-450 isoenzymes and cytosolic GSH-transferases, which in turn result in changes in the activation and detoxification capacity of the liver, would appear to explain age-dependent changes in the activity of mutagens in vivo.  相似文献   

20.
Xeroderma pigmentosum patients, in addition to ultraviolet-induced skin cancers, have an increased prevalence of neoplasms occurring in sites shielded from ultraviolet radiation. We postulated that these internal neoplasms might be related to ingestion of dietary carcinogens. As model dietary carcinogens, we studied the tryptophan pyrolysis products, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). These dietary compounds bind to DNA and are highly mutagenic and carcinogenic. Cytotoxicity of these compounds was examined in cultured lymphoblastoid cell lines from xeroderma pigmentosum patients in complementation groups A, B, C, D and E and the variant form and from normal donors. All xeroderma pigmentosum lymphoblastoid cell lines showed a greater reduction in viable cell concentration than the 2 normal lymphoblastoid cell lines following addition of Trp-P-1 or Trp-P-2 (5 micrograms/ml) to the culture medium. Possible differences in cellular activation of these compounds were overcome by treating the cells with rat-liver microsome-activated Trp-P-2. There was a greater reduction in viable cell concentration in the xeroderma pigmentosum group A and D cells than in the normal lymphoblastoid cell lines after treatment with activated Trp-P-2. These data suggest that the xeroderma pigmentosum DNA-repair system is defective in repairing Trp-P-1 and Trp-P-2 induced DNA damage in addition to being defective in repairing ultraviolet-induced DNA damage. Thus xeroderma pigmentosum patients may be at increased risk of toxicity from some dietary carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号