首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI), is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu(+)/−/CDCP1+ breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell–substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu+, but not HER-2/neu(+)/− cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.  相似文献   

2.
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.  相似文献   

3.
Protein phosphorylation plays critical roles in many regulatory mechanisms controlling cell activities and thus involved in various diseases. The cellular equilibrium of phosphorylation is regulated through the actions of protein kinases and phosphatases. Therefore, these regulatory proteins have emerged as promising targets for drug development. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), a potent inhibitor of SHP-1 and SHP-2 PTPs. Phosphatase activity of dual-specificity protein phosphatase 26 (DUSP26) was decreased by the inhibitor in a dose-dependent manner. Kinetic studies with NSC-87877 and DUSP26 revealed a competitive inhibition. NSC-87877 effectively inhibited DUSP26-mediated dephosphorylation of p38, a member of mitogen-activated protein kinase (MAPK) family. Since DUSP26 is involved in survival of anaplastic thyroid cancer (ATC) cells, NSC-87877 could be a therapeutic reagent for treating ATC.  相似文献   

4.
Estrogen receptor negative (ER−ve) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I2) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER−ve–p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I2 (3 μM) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER−ve mammary tumors could be sensitized to I2-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I2 treated MDA-MB231 cells. Further, CQ (20 μM) in combination with I2, showed apoptotic features such as increased sub-G1 fraction (∼5-fold), expression of cleaved caspase-9 and -3 compared to I2 treatment alone. Flowcytometry of I2 and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I2 treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I2 and CQ co-treated mice relative to I2 or vehicle treated mice. These data indicate that inhibition of autophagy renders ER−ve breast tumor cells more sensitive to I2 induced apoptosis. Thus, I2 together with autophagy inhibitor could have a potential tumorostatic role in ER−ve aggressive breast tumors that may be evaluated in future studies.  相似文献   

5.
Mechanical stress plays a key role in bone remodeling. Previous studies showed that loading of mechanical stretch induces a rapid Ca2+ influx and subsequent activation of stress-activated protein kinase pathways in osteoblasts. However, the activation mechanism and its significance in bone remodeling have not been fully elucidated. Here we show that TAK1 MAPKKK was activated by cyclic stretch loading of MC3T3-E1 cells. Knockdown of TAK1 attenuated the stretch-induced activation of JNK, p38, and NF-κB. Extracellular (EGTA) or intracellular (BAPTA/AM) Ca2+ chelator prevented the stretch-induced activation of TAK1. Activation of TAK1 and its associated downstream signaling pathways were also suppressed by CaMKII inhibitors (KN-93 and KN-62). Furthermore, TAK1-mediated downstream pathways cooperatively induced the expression of IL-6 mRNA in the stretched MC3T3-E1 cells. We also confirmed that TAK1 mediates cyclic stretch-induced IL-6 protein synthesis in the cells using immunoblotting and ELISA. Finally, stretch loading of murine primary osteoblasts induced the expression of IL-6 mRNA via TAK1. Collectively, these data suggest that stretch-dependent Ca2+ influx activates TAK1 via CaMKII, leading to the enhanced expression of IL-6 through JNK, p38, and NF-κB pathways in osteoblasts.  相似文献   

6.
SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases   总被引:8,自引:0,他引:8  
SHP-1 has been proposed to be a tumor suppressor gene for several cancers. The expression of SHP-1 protein is diminished or abolished in most leukemia and lymphoma cell lines and tissues, and in some non-hematopoietic cancer cell lines, such as estrogen receptor (ER) negative breast cancer cell lines and some colorectal cancer cell lines. However, we do not know whether the reduced SHP-1 expression is the cause of cancer diseases or the secondary effect of cancer developments. Here, we first demonstrate that SHP-1 has general tumor suppressing function in SHP-1 transfected cell lines. Transfected SHP-1 inhibits the growth of three lymphoma/leukemia cell lines (Ramos, H9, Jurkat) and one breast cancer cell line (HTB26). We also demonstrate a possible molecular mechanism for the tumor suppressing function of SHP-1: SHP-1 inhibits cell growth partly by negative regulation of activated JAK kinase. In addition, we find, for the first time, that SHP-1 down-regulates the level of TYK2 kinase in H9 cells and of JAK1 kinase in HTB26 cells, by accelerating their degradation. The SHP-1 accelerated degradation of JAK1 kinase in HTB26 cells was blocked with the treatment of MG132, a specific inhibitor for proteasome-mediated proteolysis. Our data suggest a new function of SHP-1 in the regulation of proteasome-mediated degradation pathway.  相似文献   

7.
Protein kinase Cα (PKCα) is a classical PKC isoform whose involvement in cell death is not completely understood. Bax, a major member of the Bcl-2 family, is required for apoptotic cell death and regulation of Bax translocation and insertion into the outer mitochondrial membrane is crucial for regulation of the apoptotic process. Here we show that PKCα increases the translocation and insertion of Bax c-myc (an active form of Bax) into the outer membrane of yeast mitochondria. This is associated with an increase in cytochrome c (cyt c) release, reactive oxygen species production (ROS), mitochondrial network fragmentation and cell death. This cell death process is regulated, since it correlates with an increase in autophagy but not with plasma membrane permeabilization. The observed increase in Bax c-myc translocation and insertion by PKCα is not due to Bax c-myc phosphorylation, and the higher cell death observed is independent of the PKCα kinase activity. PKCα may therefore have functions other than its kinase activity that aid in Bax c-myc translocation and insertion into mitochondria. Together, these results give a mechanistic insight on apoptosis regulation by PKCα through regulation of Bax insertion into mitochondria.  相似文献   

8.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

9.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1−/− colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.  相似文献   

10.
Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1Thr163 phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells.  相似文献   

11.
Glycogen, a branched polymer of glucose, acts as an intracellular carbon and energy reserve in many tissues and cell types. An important pathway for its degradation is by transport to lysosomes in an autophagy-like process. It has been proposed that starch-binding domain-containing protein 1 (Stbd1) may participate in this mechanism by anchoring glycogen to intracellular membranes. In addition, Stbd1 has been reported to interact with a known autophagy protein, GABARAPL1, a member of the Atg8 family. Here, we confirm this interaction and identify an Atg8 interacting motif (AIM) in Stbd1 necessary for GABARAPL1 binding as judged by co-immunoprecipitation from cell extracts and co-localization in cells as evidenced by immunofluorescence microscopy. The AIM sequence of Stbd1 200HEEWEMV206 lies within a predicted disordered region of the molecule and fits the consensus of other AIM sequences in cargo-specifying proteins such as p62 and Nix. Mutation of the AIM, including single point mutations of either W203 or V206, eliminated the co-localization of Stbd1 with both over-expressed and endogenous GABARAPL1. Stbd1 may therefore function as a novel cargo binding protein that delivers glycogen to lysosomes in an autophagic pathway that could be termed “glycophagy”.  相似文献   

12.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

13.
Colorectal cancer is a major contributor of cancer-related mortality. The mammalian target or rapamycin (mTOR) signaling is frequently hyper-activated in colorectal cancers, promoting cancer progression and chemo-resistance. In the current study, we investigated the anti-colorectal cancer effect of a novel mTOR complex 1 (mTORC1) and mTORC2 dual inhibitor: AZD-2014. In cultured colorectal cancer cell lines, AZD-2014 significantly inhibited cancer cell growth without inducing significant cell apoptosis. AZD-2014 blocked activation of both mTORC1 (S6K and S6 phosphorylation) and mTORC2 (Akt Ser 473 phosphorylation), and activated autophagy in colorectal cancer cells. Meanwhile, autophagy inhibition by 3-methyaldenine (3-MA) and hydroxychloroquine, as well as by siRNA knocking down of Beclin-1 or ATG-7, inhibited AZD-2014-induced cytotoxicity, while the apoptosis inhibitor had no rescue effect. In vivo, AZD-2014 oral administration significantly inhibited the growth of HT-29 cell xenograft in SCID mice, and the mice survival was dramatically improved. At the same time, in xenografted tumors administrated with AZD-2014, the activation of mTORC1 and mTORC2 were largely inhibited, and autophagic markers were significantly increased. Thus, AZD-2014 inhibits colorectal cancer cell growth both in vivo and in vitro. Our results suggest that AZD-2014 may be further investigated for colorectal cancer therapy in clinical trials.  相似文献   

14.
15.
Bone morphogenetic proteins (BMPs) are multifunctional signaling molecules that have gained increasing interest in cancer research. To obtain a systematic view on BMP signaling in pancreatic cancer we first determined the mRNA expression levels of seven BMP ligands (BMP2BMP8) and six BMP specific receptors in pancreatic cancer cell lines and normal pancreatic tissue. BMP receptor expression was seen in all cancer and normal samples. Low expression levels of BMP5 and BMP8 were detected in cancer cells compared to the normal samples, whereas BMP4 expression was elevated in 25% of the cases. The impact of BMP4 and BMP5 signaling on cell phenotype was then evaluated in five pancreatic cancer cell lines. Both ligands suppressed the growth of three cell lines (up to 79% decrease in BMP4-treated PANC-1 cells), mainly due to cell cycle changes. BMP4 and BMP5 concurrently increased cell migration and invasion (maximally a 10.8-fold increase in invaded BMP4-treated PANC-1 cells). The phenotypic changes were typically associated with the activation of the canonical SMAD pathway, although such activation was not observed in the PANC-1 cells. Taken together, BMP4 and BMP5 simultaneously inhibit the growth and promote migration and invasion of the same pancreatic cells and thus exhibit a biphasic role with both detrimental and beneficial functions in pancreatic cancer progression.  相似文献   

16.
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47phox, a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton’s tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.  相似文献   

17.
Concanavalin A (ConA), normally a mitogen of T-lymphocytes, was found to be a cell cycle-independent apoptosis-inducing agent in cultured murine macrophage PU5-1.8 cells. This assertion is based on the following observations: (1) ConA increased the number of cells with hypo-diploid DNA in a dose dependent manner as revealed by flow cytometry; (2) ConA elicited DNA fragmentation and the cytotoxicity of ConA was suppressed by -D-methylmannoside which blocks the lectin site of ConA; (3) ConA was able to release cytochrome c (cyto c) into the cytosol of PU5-1.8 cells. When isolated mitochondria were incubated with ConA, release of cyto c was observed too. Interestingly, clustering of mitochondria was found in the cytosol under a confocal microscope after ConA treatment. When cells were incubated with ConA-FITC and subsequently with mitotracker red (a probe for mitochondria), co-localization of fluorescence signals was observed. These results suggest that ConA was delivered to the mitochondria, induced mitochondrial clustering and released cyto c. Our results also show that introduction of exogenous cyto c electroporationally into ConA-untreated cells elicited DNA fragmentation. On the other hand, introduction of specific antibody against cyto c into PU5-1.8 cells suppressed the ConA-mediated cell death. Taken together, our results indicate that ConA induced apoptosis in PU5-1.8 cells through mitochondrial clustering and release of cyto c and the release of cyto c was sufficient to elicit apoptosis in PU5-1.8 cells.  相似文献   

18.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

19.
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号