首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Death by design: apoptosis, necrosis and autophagy   总被引:29,自引:0,他引:29  
Apoptosis is the principal mechanism by which cells are physiologically eliminated in metazoan organisms. During apoptotic death, cells are neatly carved up by caspases and packaged into apoptotic bodies as a mechanism to avoid immune activation. Recently, necrosis, once thought of as simply a passive, unorganized way to die, has emerged as an alternate form of programmed cell death whose activation might have important biological consequences, including the induction of an inflammatory response. Autophagy has also been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy in times of stress. Recent advances have helped to define the function of and mechanism for programmed necrosis and the role of autophagy in cell survival and suicide.  相似文献   

2.
Cell death pathology: the war against cancer   总被引:1,自引:0,他引:1  
Programmed cell death was a fundamental discovery, awarded with the Nobel price in 2002 to Sulston, Brenner and Horvitz [1]. Since then it has been clear that alteration of apoptotic pathways is a common feature of tumors, enabling cancer cells to survive chemotherapeutic interventions. Thus, apoptosis is an attractive target in cancer therapy, with the aim to revert the cancer-related alterations of the cell death machinery. Here, we overview the fundamental apoptotic pathways and summarize the attempts to target apoptosis to restore cell death in cancer cells with a special focus on the p53-family and autophagy.  相似文献   

3.
4.
The purine-derived analogs, roscovitine and purvalanol are selective synthetic inhibitors of cyclin-dependent kinases (CDKs) induced cell cycle arrest and lead to apoptotic cell death in various cancer cells. Although a number of studies investigated the molecular mechanism of each CDK inhibitor on apoptotic cell death mechanism with their therapeutic potential, their regulatory role on autophagy is not clarified yet. In this paper, our aim was to investigate molecular mechanism of CDK inhibitors on autophagy and apoptosis in wild type (wt) and Bax deficient HCT 116 cells. Exposure of HCT 116 wt and Bax−/− cells to roscovitine or purvalanol for 24 h decreased cell viability in dose-dependent manner. However, Bax deficient HCT 116 cells were found more resistant against purvalanol treatment compared to wt cells. We also established that both CDK inhibitors induced apoptosis through activating mitochondria-mediated pathway in caspase-dependent manner regardless of Bax expression in HCT 116 colon cancer cells. Concomitantly, we determined that purvalanol was also effective on autophagy in HCT 116 colon cancer cells. Inhibition of autophagy by 3-MA treatment enhanced the purvalanol induced apoptotic cell death in HCT 116 Bax−/− cells. Our results revealed that mechanistic action of each CDK inhibitor on cell death mechanism differs. While purvalanol treatment activated apoptosis and autophagy in HCT 116 cells, roscovitine was only effective on caspase-dependent apoptotic pathway. Another important difference between two CDK inhibitors, although roscovitine treatment overcame Bax-mediated drug resistance in HCT 116 cells, purvalanol did not exert same effect.  相似文献   

5.

Background

The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways.

Methodology/Principal Findings

In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death.

Conclusion/Significance

Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.  相似文献   

6.
Estrogen receptor negative (ER−ve) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I2) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER−ve–p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I2 (3 μM) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER−ve mammary tumors could be sensitized to I2-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I2 treated MDA-MB231 cells. Further, CQ (20 μM) in combination with I2, showed apoptotic features such as increased sub-G1 fraction (∼5-fold), expression of cleaved caspase-9 and -3 compared to I2 treatment alone. Flowcytometry of I2 and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I2 treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I2 and CQ co-treated mice relative to I2 or vehicle treated mice. These data indicate that inhibition of autophagy renders ER−ve breast tumor cells more sensitive to I2 induced apoptosis. Thus, I2 together with autophagy inhibitor could have a potential tumorostatic role in ER−ve aggressive breast tumors that may be evaluated in future studies.  相似文献   

7.
Apoptotic cell death eventually results in secondary necrotic cell death, whereas caspase-independent primary necrotic cell death has been reported and its mechanism involving RIP1 and RIP3 has been recently elucidated. Dual staining with fluorescent Annexin V and propidium iodide (PI) has been used to discriminate apoptotic and necrotic cell death, in which Annexin V-positive/PI-negative staining is regarded as apoptosis and PI-positive staining as necrosis. Here we demonstrate that primary necrotic cells unexpectedly show Annexin V-positive/PI-negative staining before they become PI-positive, and that primary necrotic and apoptotic Annexin V-positive/PI-negative cells can be discriminated by necrostatin-1, an inhibitor of primary necrosis by inhibition of RIP1.  相似文献   

8.
Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.  相似文献   

9.
The tomato AGC protein kinase Adi3 is known to function as a suppressor of PCD and silencing of Adi3 leads to spontaneous cell death on leaves and stems. In an effort to isolate Adi3 interacting proteins, a yeast two-hybrid screen was carried out and identified the autophagy protein Atg8h as an Adi3 interactor. This interaction occurred independent of the kinase activity status of Adi3. Silencing of genes involved in autophagy is known to eliminate the restriction of pathogen-induced PCD to a few cells and leads to run away PCD. Cosilencing Adi3 with several autophagy genes lead to the same run away cell death suggesting Adi3 may be involved in autophagic regulation of PCD.  相似文献   

10.
Macroautophagy (commonly referred to as autophagy) is the process by which intact organelles and/or large portions of the cytoplasm are engulfed within double-membraned autophagic vacuoles for degradation. Whereas basal levels of autophagy ensure the physiological turnover of old and damaged organelles, the massive accumulation of autophagic vacuoles may represent either an alternative pathway of cell death or an ultimate attempt for cells to survive by adapting to stress. The activation of the autophagic pathway beyond a certain threshold may promote cell death directly, by causing the collapse of cellular functions as a result of cellular atrophy (autophagic, or type II, cell death). Alternatively, autophagy can lead to the execution of apoptotic (type I) or necrotic (type III) cell death programs, presumably via common regulators such as proteins from the Bcl-2 family. On the other hand, limited self-eating can provide cells with metabolic substrates to meet their energetic demands under stressful conditions, such as nutrient deprivation, or favor the selective elimination of damaged (and potentially dangerous) organelles. In these instances, autophagy operates as a pro-survival mechanism. The coordinate regulation of these opposite effects of autophagy relies upon a complex network of signal transducers, most of which also participate in non-autophagic signaling cascades. Thus, autophagy occupies a crucial position within the cell's metabolism, and its modulation may represent an alternative therapeutic strategy in several pathological settings including cancer and neurodegeneration. Here, we present a general outline of autophagy followed by a detailed analysis of organelle-specific autophagic pathways and of their intimate connections with cell death.  相似文献   

11.
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood.Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS.Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy.Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer.  相似文献   

12.
Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.  相似文献   

13.
《Autophagy》2013,9(5):455-456
Many people are studying how autophagy intersects with cell death. While most of those studies relate to autophagy acting as a protective mechanism (e.g., to block apoptosis), many papers conclude that autophagy is a death mechanism, and there is a widespread belief that autophagy (in most, but not all cases, we are talking about macroautophagy) can both kill and protect cells depending on the circumstances. Not surprisingly therefore, many of the papers submitted to Autophagy study the relationship between autophagy and cell death.  相似文献   

14.
Types of cell death include apoptosis, necrosis, and autophagic cell death. The latter can be defined as death of cells containing autophagosomes, autophagic bodies, and/or vacuoles. Are autophagy and vacuolization causes, consequences, or side effects in cell death with autophagy? Would control of autophagy suffice to control this type of cell death? We disrupted the atg1 autophagy gene in Dictyostelium discoideum, a genetically tractable model for developmental autophagic vacuolar cell death. The procedure that induced autophagy, vacuolization, and death in wild-type cells led in atg1 mutant cells to impaired autophagy and to no vacuolization, demonstrating that atg1 is required for vacuolization. Unexpectedly, however, cell death still took place, with a non-vacuolar and centrally condensed morphology. Thus, a cell death mechanism that does not require vacuolization can operate in this cell death model showing conspicuous vacuolization. The revelation of non-vacuolar cell death in this protist by autophagy gene disruption is reminiscent of caspase inhibition revealing necrotic cell death in animal cells. Thus, hidden alternative cell death pathways may be found across kingdoms and for diverse types of cell death.  相似文献   

15.
Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.  相似文献   

16.
Colorectal cancer is the second most common cause of cancer death in the world and about half of the patients with colorectal cancer require adjuvant therapy after surgical resection. Therefore, the eradication of cancer cells via chemotherapy constitutes a viable approach to treating patients with colorectal cancer. In this study, the effects of bufalin isolated from a traditional Chinese medicine were evaluated and characterized in HT-29 and Caco-2 human colon cancer cells. Contrary to its well-documented apoptosis-promoting activity in other cancer cells, bufalin did not cause caspase-dependent cell death in colon cancer cells, as indicated by the absence of significant early apoptosis as well as poly(ADP-ribose) polymerase and caspase-3 cleavage. Instead, bufalin activated an autophagy pathway, as characterized by the accumulation of LC3-II and the stimulation of autophagic flux. The induction of autophagy by bufalin was linked to the generation of reactive oxygen species (ROS). ROS activated autophagy via the c-Jun NH2-terminal kinase (JNK). JNK activation increased expression of ATG5 and Beclin-1. ROS antioxidants (N-acetylcysteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA attenuated bufalin-induced autophagy. Our findings unveil a novel mechanism of drug action by bufalin in colon cancer cells and open up the possibility of treating colorectal cancer through a ROS-dependent autophagy pathway.  相似文献   

17.

Introduction  

Programmed cell death of intervertebral disc (IVD) cells plays an important role in IVD degeneration, but the role of autophagy, a closely related cell death event, in IVD cells has not been documented. The current study was designed to investigate the effect of interleukin (IL)-1β on the occurrence of autophagy of rat annulus fibrosus (AF) cells and the interrelationship between autophagy and apoptosis.  相似文献   

18.
Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed—in contrast to viable parasites—that apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.  相似文献   

19.
Piperlongumine (PL), a natural product isolated from the plant species Piper longum L., can selectively induce apoptotic cell death in cancer cells by targeting the stress response to reactive oxygen species (ROS). Here we show that PL induces cell death in the presence of benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone (zVAD-fmk), a pan-apoptotic inhibitor, and in the presence of necrostatin-1, a necrotic inhibitor. Instead PL-induced cell death can be suppressed by 3-methyladenine, an autophagy inhibitor, and substantially attenuated in cells lacking the autophagy-related 5 (Atg5) gene. We further show that PL enhances autophagy activity without blocking autophagy flux. Application of N-acetyl-cysteine, an antioxidant, markedly reduces PL-induced autophagy and cell death, suggesting an essential role for intracellular ROS in PL-induced autophagy. Furthermore, PL stimulates the activation of p38 protein kinase through ROS-induced stress response and p38 signaling is necessary for the action of PL as SB203580, a p38 inhibitor, or dominant-negative p38 can effectively reduce PL-mediated autophagy. Thus, we have characterized a new mechanism for PL-induced cell death through the ROS-p38 pathway. Our findings support the therapeutic potential of PL by triggering autophagic cell death.  相似文献   

20.
《Autophagy》2013,9(2):281-282
Cancer cells have evolved exquisitely to ignore both intrinsic and extrinsic cell death signals, and resistance to cell death is a critical challenge facing clinical oncology. Autophagy, the catabolic recycling process that involves the fusion of autophagosomes containing sequestered cargo with lysosomes, has an enigmatic role in tumorigenesis. In times of metabolic stress due to deprived nutrition or hypoxia, tumor cells use autophagy as a scavenging mechanism for maintenance of critical processes and survival. However, modulation of the extent of autophagy plays a critical role, as excessive autophagy can result in a non-apoptotic and non-necrotic cell death (sometimes referred to as Type II programmed cell death). It is likely that the genetic context of specific cancers will have an impact upon whether autophagy is primarily a mechanism for survival or cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号